2018 EN

Technical Manual Brake disc machining

CERATIZIT is a high-tech engineering group specialised in tooling and hard material technologies.

CUTTING SOLUTIONS BY CERATIZIT **Tooling the Future**

www.ceratizit.com

Dear customers,

Machining brake discs and brake drums presents major challenges: the strong competitive pressure calls for ever-increasing performance at lower and lower costs. Series production, above all, places high demands of application data and process security here, in order to keep the item costs as low as possible.

As a long-standing partner of leading manufacturers, we are extremely familiar with these requirements in large-scale production and can offer you a range of innovative and significantly improved cutting material and cutting tool solutions for all areas of brake disc machining. We will support you in optimising your processes and increasing productivity within your company. Get in touch!

Your Cutting Solutions by CERATIZIT team

Advantage through innovation: longer service lives thanks to first-class cutting materials and optimised tools

Contents

Introduction	6–17
CERATIZIT Group	6–7
Quality	8_9
Logistics	10–11
CERATIZIT Services	12–13
Brake disc machining – overview	14–17
Designation systems	18–25
Designation systems for tools and indexable inserts	18–24
Designation system for grades	25
	··
Material - cast iron	26–37
Material designation system	28
Cast iron – overview	29–30
Relative machinability – comparison	31–37
Turning with comparing and ODN	38–65
Turning with ceramics and CBN	
Overview and description of grades C-clamp 2.0 – advantages and installation instructions	40-43
C-clamp 2.0 – advantages and installation instructions	44–48 49–51
Tools	52-63
Indexable inserts for ISO holders	64-65
Turning with carbide grades	66–89
Overview and description of grades	68–69
Indexable inserts	70–77
Tools	78–89
Ceramic grooving with CX 24	90–95
Overview and description of grades Grooving inserts	92
Tools	94–95
Technical references	96–113
Success stories	98–105
Types of wear	106–107
Troubleshooting guide for turning	108–109
Comparison table for materials	110–113
OEM services	114–123
OEM services	116–119
Industry solutions	120

6

BRAKE DISC MACHINING \ CERATIZIT GROUP

CERATIZIT – with passion and pioneering spirit for carbides

For more than **95 years**, CERATIZIT has been a **pioneer** in the field of ambitious hard materials solutions for machining and protection against wear. The private company, with registered offices in Mamer, Luxembourg, develops and produces highly-specialised cutting tools, indexable inserts, rods and wear parts made from hard materials. The CERATIZIT Group is the **global market leader** in various application segments for wear parts and is successfully developing new carbide, cermet and ceramic grades, for example for woodworking and stone working. With more than 9,000 employees at 34 production facilities worldwide and a sales network with over 70 branches, CERATIZIT is a global player in the carbide sector. The technology leader is constantly investing in research and development and holds more than 1,000 patents. Innovative carbide solutions from CERATIZIT are used in mechanical engineering and tool making, in the automotive industry, the aviation and aerospace industry, and in the medical industry.

The CERATIZIT Group is active internationally and unites the four flagship brands Cutting Solutions by CERATIZIT, Hard Material Solutions by CERATIZIT, Tool Solutions by CERATIZIT and Toolmaker Solutions by CERATIZIT. The carbide manufacturer also owns the WNT and CB-CERATIZIT subsidiaries, as well as the tool manufacturers Günther Wirth, PROMAX Tools, Klenk, Cobra Carbide India, Becker Diamantwerkzeuge, Best Carbide Cutting Tools and KOMET GROUP.

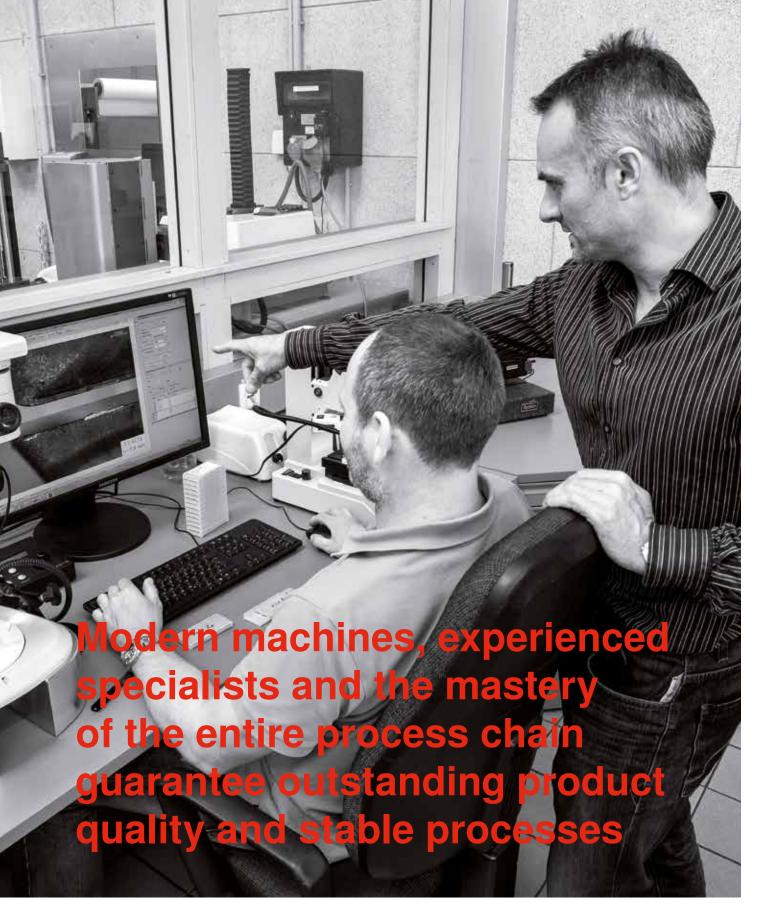
Facts & figures

1 headquarters Mamer / Luxembourg

34 Production facilities

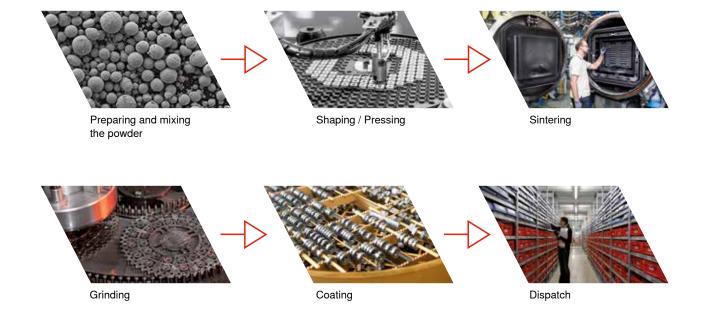
> 70 Sales offices

> 10 Innovation prizes



Patents and utility models

30% Products that are less than 5 years old


CUTTING SOLUTIONS BY CERATIZIT

Always the best quality

Cutting Solutions by CERATIZIT is a quality leader that unites all of the process knowledge and the extensive manufacturing competences of the CERATIZIT Group.

- ▲ Highly-qualified, trained experts in a wide range of areas.
- ▲ We control each individual production step.
- ▲ Our modern fleet of machinery is constantly being extended and improved.
- ▲ Optimised production processes reduce process costs and ensure that our products are of the very highest quality, as well as being environmentally friendly.
- ▲ Independently tested and certified products.

Recycling

BRAKE DISC MACHINING \ LOGISTICS

10

Well thought-out logistics processes, a global sales network and flexible, high

network and flexible, high production capacities guarantee rapid and reliable delivery of your product solutions

Optimum availability

The majority of our standard products are available from stock. Our well organised warehouse guarantees that your order will be processed quickly and reliably, even if it is for large quantities. Thanks to our modern supply chain management, our production capacities are flexible. We are therefore able to manufacture very large quantities in a very short period of time.

You can order products that are in stock from our online e-techstore, 24 hours a day.

e-techstore.com Available for you 24 hours a day

The benefits for you:

- ▲ Live check on product availability
- ▲ Comprehensive technical details and graphical representations
- ▲ Rapid delivery: For orders placed before 6.30 pm, the goods are dispatched from our warehouse in Kempten, Germany on the same day
- ▲ Adherence to deadlines: We work exclusively with the best and most reliable transport service providers in the industry

CERATIZIT Services

Online service

Of course, we are also here for you online – 24 hours a day! On the CERATIZIT website, you will not only find all the details on our innovative products, but can also order these products straight away. Within the various product ranges, you have access to over 80 product details pages from the fields of machining, rods & moulded parts, wear protection and wood & stone working. Discover product videos, application examples and success stories.

Connection to your system

Would you like to connect your ERP system to our shop, for example? No problem! Please do not hesitate to contact our e-commerce team. Our IT supports all common connection formats (EDI, XML, OCI, etc.). Just get in touch! Working together with you, our engineers will analyse the prerequisites and advise you on selecting the correct technology.

Restore service

Re-grinding service for standard, semi-standard and special tools. Place your trust in the world-renowned, consistently high product quality and reliable service of Cutting Solutions by CERATIZIT. This also includes re-grinding of solid carbide

tools. Naturally, the prices for our restore service are also transparent and calculated fairly.

Configurate

Your tailor-made tool. Using the Configurate online solution, a tailor-made semi-standard tool can be configured with just a few clicks of the mouse. With the new Configurate tool, we offer you a quick and easy ordering process for solid carbide tools adapted to individual customer's requirements. In our e-techstore, you can create your tailor-made semi-standard tool with just a few clicks of the mouse – 24 hours a day, seven days a week!

Tooling Academy

In addition, familiarise yourself with how the tools will work in your applications, right down to the details – on machines like those in use in all production facilities today. To enable this, we have set up test and training centres with cutting-edge machines and the very latest analysis technology in our Tooling Academy.

Working together with you, we investigate the workability of the materials and tools. Based on the findings from simulations and practical tests, we then draw up specific tool recommendations or develop specific tool solutions for you.

Complete range Cutting tools

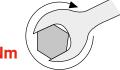
Brake disc machining

Advantage through innovation and higher productivity

A significant amount of grey cast iron is still used in brake disc production in the car and commercial vehicle sector. However, despite supposedly being easy to work with, the material has its challenges: in particular, the extremely fine, abrasive chip flow is a real test for clamping devices. At cutting speeds in excess of 1,000 m/min and with feeds of over 0.5 mm, normal steel clamping fingers do not hold much longer than a single cutting edge. Compared to steel precision casting claws, which are not equipped to withstand the high stresses involved in turning cast iron with ceramic and CBN cutting materials, the CERATIZIT carbide claw has undergone further development and provides a significantly increased tool life. We also offer appropriate cutting material and tool solutions for the other operations that make up brake disc machining, including machining the thermal groove or drilling and milling the brake calliper.

C-clamp 2.0 – the most wear-resistant claw on the market

The increased cutting speeds when turning grey cast iron with ceramic and CBN cutting inserts result in higher temperatures and chip flow speeds. This places the clamping system under an enormous amount of stress. Our C-clamp full-carbide claw is able to withstand these stresses and has proven its worth over many years – it is the most wearresistant clamping solution on the market.


Machining brake discs in large-scale production makes particularly high demands of tool life and process security. In consultation with our customers, we have developed our successful clamping claw still further, into C-clamp 2.0. Its innovative design permits an increased tightening torque and offers even greater process security with easier handling. Combined with first-class CERATIZIT cutting materials ranging from carbide, cermet and ceramics through to full-CBN solutions (CTCK110, CTEP110, CTN / CTI3105, CTBK103), it enables a significant increase in productivity, with up to 40%-higher cutting speeds and feed rates.

C-clamp 2.0 – highlights

- M8 Hexagon head screw with collar in 10.9 quality
- ▲ Tried-and-tested wedge clamping > NO chip deposits!
- ▲ Larger contact surfaces
- ▲ 20% higher tightening torque

20 Nm

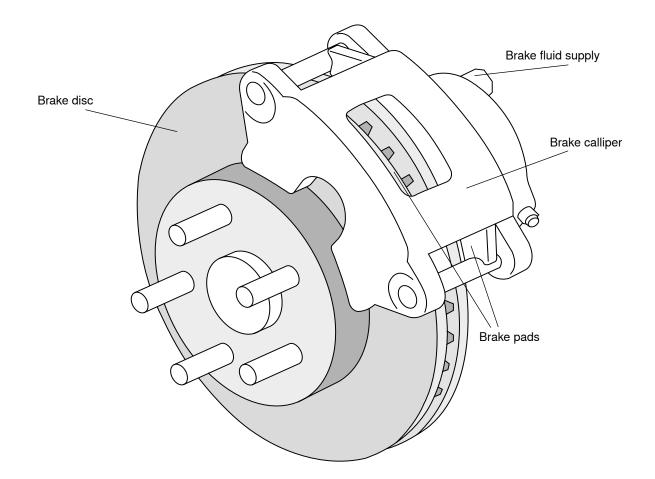
CX24 – ceramic grooving with CBN values

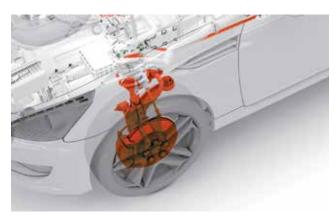
Creating the thermal groove on the brake disc is an important machining step and calls for an extremely stable tool. Based on customer requirements for a stable, process-secure solution, a full-carbide claw is also used for this grooving operation.

In order to meet the high demands of long-term operation and thereby to minimise the changing time and keep the handling as simple as possible, the CX24 grooving system was developed in collaboration with our customers. Combined with high-performance CERATIZIT cutting materials, this enables stable, extremely precise grooving without vibrations, and with greatly reduced tool wear. The optimised design permits high feed rates. The option of profiling and grooving using just one system means potential savings of up to 85%! The CX24 grooving system helps you to make series production of brake discs more productive.

Unique characteristics

- Installation at an angle of 4° cutting force distributed between two components
- ▲ Wedge shape also permits reverse profiling
- ▲ Defined mating surface absolutely no risk of mix-up
- ▲ 110° prism also enables side profiling

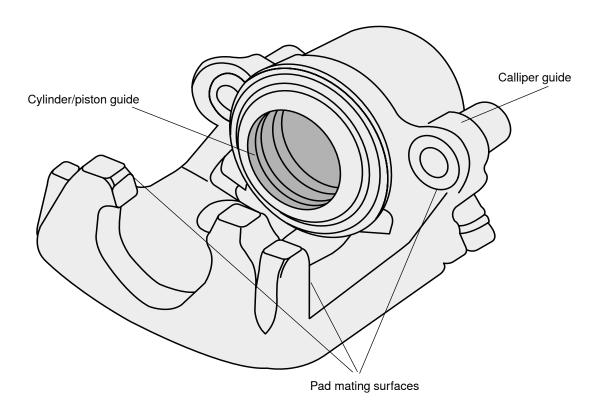

Brake disc or drum


In general, brake discs with internal ventilation are used for the front axle, while the discs for the rear axle do not have this. In smaller cars, due to the lower braking effect and stress for the brake system, a drum version is often designed for the rear axle.

On front discs with a ventilation gap, the machining of the external diameter is the most critical operation. A very rough

belt cutting procedure is used to separate the gate marks and the deployed tool must be able to withstand heavily interrupted cuts (in addition to the interruptions caused by the ventilation geometry)!

The rear axle discs, however, which are supposedly easier to machine, are considerably more inclined to vibrate during finishing.



Front axle

Rear axle

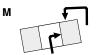
Brake calliper

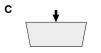
The guide for the brake pads and its attachment to the wheel suspension are produced using only drilling and milling. However, in the case of brake calliper production, multiple model ranges are often drawn together, meaning that greater volumes arise than for the discs themselves. Our 90° face milling systems, the PCD-equipped HPC cutters and the full-carbide range from CT-Günther Wirth, with its standard drilling and thread cutting solutions, form part of the CERATIZIT standard range and, with the exception of customer-specific insert geometries, can also be supplied directly from stock!

Brake pads

We do not carry out machining work on these components. The pads are manufactured similarly to our indexable inserts, by means of pressing and sintering, and are then soldered onto the metal support inserts.

Brake pads


Designation systems for tool holders

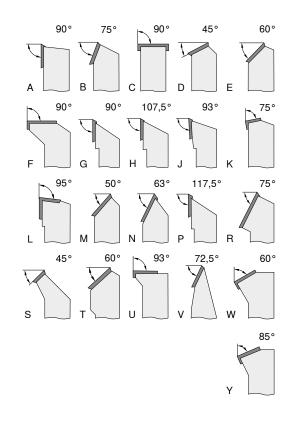

1 Tool holder

Retained from above and via bore

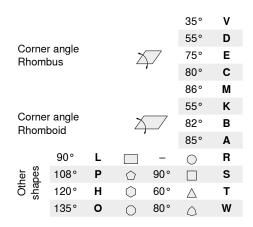
Retained from above and via bore

Retained from above

Retained via centre screw

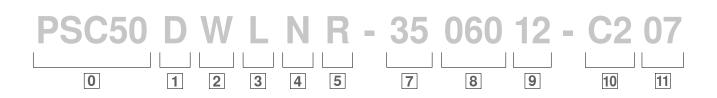

Retained via bore

X X Special version



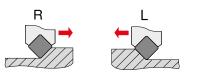
3 Holder shape

2 Insert shape



4 Clearance angle

3°	Α	25°	F
5°	в	30°	G
7°	С	0°	Ν
15°	D	11°	Р
20°	Е	*)	0



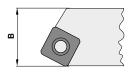
*) Clearance angles outside the standard, for which special information is required

Ν

5 Direction of cut

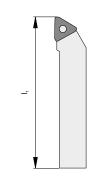
6 Shank height

7 Shank width / F dimension for PSC tools

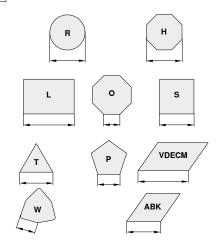

Ν

Ρ

Q R S


T U

V W Y X



8 Tool length

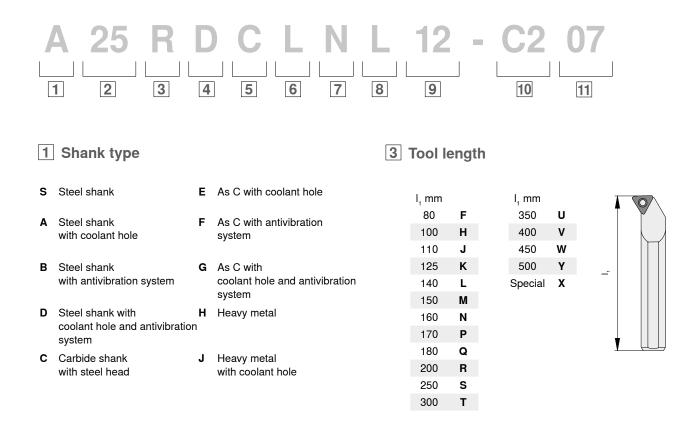
l₁ mm		l₁ mm
32	Α	160
40	в	170
50	С	180
60	D	200
70	Е	250
80	F	300
90	G	350
100	н	400
110	J	450
125	к	500
140	L	Special
150	М	

9 Insert size

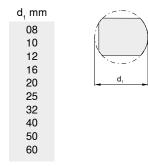
10 Manufacturer's specifications

T = Knee lever Special length (mm) Insert thickness (deviating from standard) Special version (X..) Machine manufacturer (specific)

C2 = C-clamp 2.0


11 Insert thickness

- ..07 = Supports clamping of ceramic inserts with 07' thickness. Supports clamping of CBN indexable inserts with 04' thickness
- ..04 = only supports clamping of inserts with 04' thickness


0 Adapter system

PSC50 = Polygon shank taper Ø 50 mm

Designation systems for boring bars

2 Shank diameter

4 Clamping

Retained from above and via bore

Retained from above and via bore

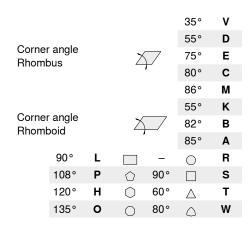
Retained from above

s

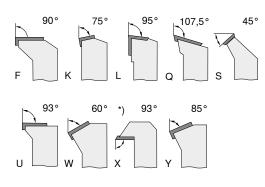
Retained via centre screw

Retained via bore

```
X
V. Special vers
```

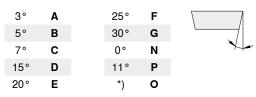

X Special version

C-clamp 2.0

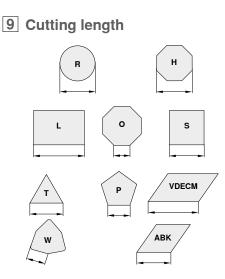


L

5 Insert shape



6 Holder shape

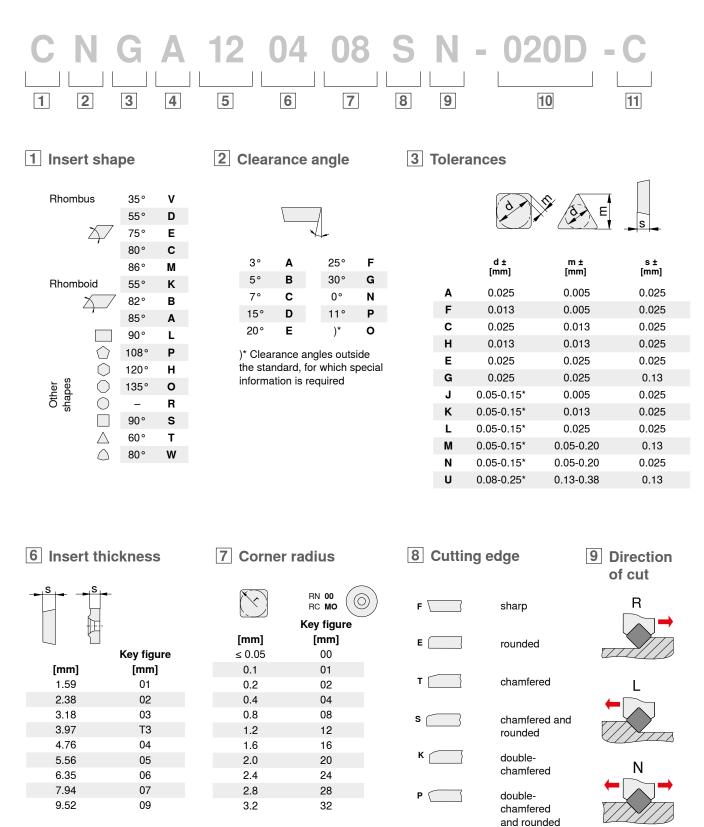

*) CERATIZIT factory standard

7 Clearance angle

*) Clearance angles outside the standard, for which special information is required

8 Direction of cut

10 Manufacturer's specifications


T = Knee lever Special length (mm) Insert thickness (deviating from standard) Special version (X..) Machine manufacturer (specific)

C2 = C-clamp 2.0

11 Insert thickness

- ..07 = Supports clamping of ceramic inserts with 07' thickness. Supports clamping of CBN indexable inserts with 04' thickness
- ..04 = only supports clamping of inserts with 04' thickness

Designation systems for indexable inserts

4 Characteristic

5 Cutting length

Ν		
R		
F		
Α		
M, P		
G, P		
w		
т		
Q		
U		
в		
н		
С		
J		
х	Special ver	sion

Туре	ISO	ANSI	[mm]	[mm]
	06	2	6.4	6.35
С	09	3	9.7	9.525
\square	12	4	12.9	12.70
- <u>L</u> +	16	5	16.1	15.875
(2)	19	6	19.3	19.05
	25	8	25.8	25.4
	32	12	32.24	31.75
	06	2	6.35	6.35
S	09	3	9.525	9.525
\Box	12	4	12.7	12.7
	15	5	15.875	15.875
	19	6	19.05	19.05
	25	8	25.4	25.4
	31	10	31.75	31.75

L

d

			L	d
Туре	ISO	ANSI	[mm]	[mm]
	06	1.2	6.9	3.97
т	09	1.8	9.6	5.56
A	11	2	11.0	6.35
	16	3	16.5	9.525
A	22	4	22.0	12.70
122	27	5	27.5	15.875
	33	6	33.0	19.05
W	06	3	6.5	9.525
Â	08	4	8.7	12.70
L.	10	5	10.9	15.875
Ì				
R	12*	4	12.7	12.70
\bigcirc	15	5	15.875	15.875
d				

-*) inch version

10 Chamfer design

-	T/S	K	y ₁	Y ₂
	[mm]			
015	0.15		Α	05°
020	0.20		в	10°
025	0.25		С	15°
050	0.50		D	20°
075	0.75		Е	25°
100	1.00		F	30°

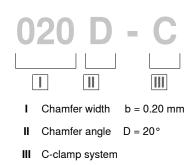
1) Two letters are assigned for double-chamfered cutting

F 30°

e.g.

BE = Chamfer angle $1 = 10^{\circ}$ Chamfer angle 2 = 25°

11 Number of cuts

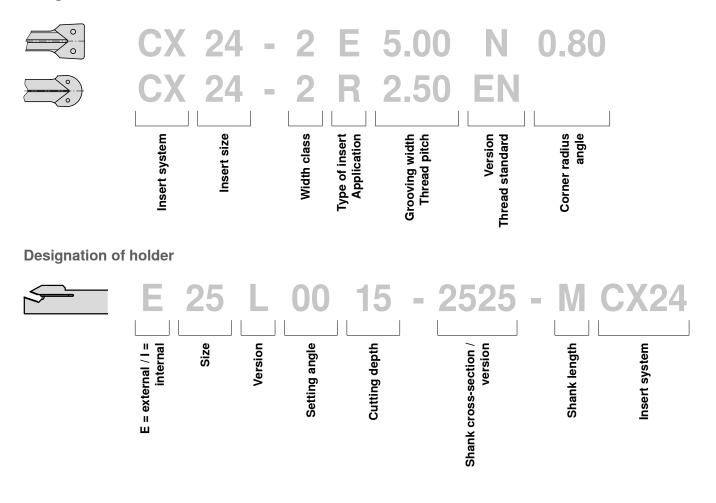

Ν

Ρ

Q

single sided		total thi	ckness
Α		т	
в		U	
С		v	
D		w	
G		х	
н		Y	
double	sided	whole r	ake face
К		S	
L		F	
М		Е	

Example 10, 11 / C-clamp system:

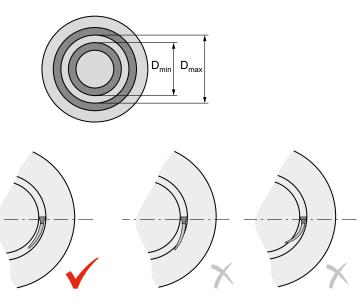


Code for angle Y

b b		Chamfer width b [mm]	U
	Α	0.20	5°
Chamfer width	в	0.20	10°
	С	0.20	15°
Y	D	0.20	20°
	Е	0.20	25°
Chamfer angle	F	0.20	30°

Designation systems for ceramic grooving systems

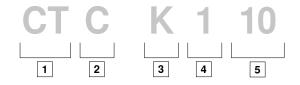
Designation of indexable inserts


Axial grooving and face turning

Diameter range

D _{min} [mm]		D _{max} [mm]
130	-	180
130	-	190
140	-	200
140	-	240

Important: The specified diameters refer to the groove diameter in accordance with the sketch, as grooving inserts of different widths can be used.


Only applicable to start diameter

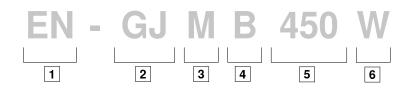
Correct axial holder

Incorrect axial holder

Designation systems for grades

- 1 Manufacturer: CERATIZIT
- 2 Cutting material type
 - W Carbide uncoated
- \Rightarrow [C Carbide CVD-coated
 - P Carbide PVD-coated
 - T Cermet uncoated
 - E Cermet coated
- N Silicon nitride uncoated
 - M Silicon nitride coated
 - S Composite ceramic
 - K Whisker ceramic
 - I Sialon
 - D PCD
- ⇒ B PCBN
 - L PCBN coated
 - H PM-HSS
- 3 Primary suitability for material Option 1: Number
- ⇒[1 Steel
 - 2 Stainless steel
- ⇒[3 Cast Iron
 - 4 Alloys and non-ferrous metals/non-metals
 - 5 Super alloys/titanium
 - 6 Hard materials
- \Rightarrow [7 Multi-use grade without particular material focus

- 3 Primary suitability for material Option 2: ISO letter
- ⇒[P Steel
 - M Stainless steel
- ➡[K Cast iron
 - N Alloys and non-ferrous metals/non-metals
 - S Super alloys/titanium
 - H Hard materials
- \Rightarrow [X Multi-use grade without particular material focus
- 4 Primary suitability for application
 - 1 Turning
- \Rightarrow 2 Milling
 - 3 Grooving
 - 4 Drilling
 - 5 Thread turning
 - 6 Other
 - 7 Multi-use grade without particular application focus
- 5 ISO 513
 - application range
- e.g. 01 05 10 15 25 35 ISO P35


Material - cast iron

It is predominantly cast iron materials that are used in the manufacture of brake discs. The term "cast iron" refers to a group of iron alloys containing carbon and silicon, as well as other elements such as manganese, chromium and nickel. The various cast iron materials differ considerably in elongation/ductility and tensile strength/hardness. Their machinability varies just as widely.

In particular, grey cast iron is the most important material in brake disc production, alongside spheroidal graphite cast iron or vermicular cast iron. The following chapter provides further information on the properties of the most important materials, their hardness and tensile strength, and which cutting materials are most suitable for each application.

Material designation system

Abbreviated names for materials have up to six designation options without spaces, starting with EN (1 - European standard) and GJ (2 - cast iron). The other parameters indicate the graphite structure (3), the micro or macro-structure (4) and the mechanical properties or chemical composition of the materials (5). The final option within the designation (6) describes additional characteristics and requirements. Material numbers have seven designation options, to which the material identifier is added.

1 EN = European standard

2 GJ = Cast iron

3 Graphite structure

- L = Lamellar graphite
- S = Spheroidal graphite
- M = Temper carbon
- V = Vermicular graphite
- N = Graphite-free
- Y = Special structure

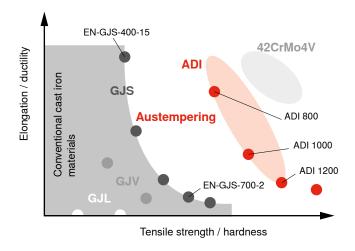
4 Micro or macro-structure

- A = Austenite
- F = Ferrite
- P = Pearlite
- M = Martensite
- L = Ledeburite
- Q = Quenched
- T = Tempered
- B = Annealed without decarburisation
- W= Annealed with decarburisation

5 Mechanical properties or chemical composition

MECHANICAL PROPERTIES

- 350 = Minimum tensile strength R_m in N/mm²
- 350-22 = Additional elongation at break A in %
- S = Sample cast separately
- U = Sample cast on
- C = Sample taken from the casting
- HB155 = max. hardness


CHEMICAL PROPERTIES

Information in line with the steel designations

6 Additional requirements

- D = Rough casting
- H = Heat-treated casting
- W= Suitable for welding
- Z = Additional requirements

Cast iron - overview

Source: RWTH study of ADI machining

Grey cast iron

(EN-GJL.../GG-...)

Tensile strength	Hardness	Elongation at break	Yield strength		
150 – 450 N/mm ²	HB 125 – 275	0.3 – 0.8%	R _p 0.2 = 98 – 285 N/mm ²		
Machinability: very good due to lamellar graphite layer and low hardness					
Classification:		EN G II 200 (for			

EN-GJL-200 (formerly GG-20) EN-GJL-250 (formerly GG-25)

EN-GJL-300 (formerly GG-30) EN-GJL-350 (formerly GG-35)

Spheroidal graphite cast iron

(EN-GJS.../GGG-...)

Tensile strength	Hardness	Elongation at break	Yield strength
350 – 700 N/mm²	-	2 – 22%	$R_p 0.2 = 220 - 480 \text{ N/mm}^2$
Machinability:			

good, higher wear than grey cast iron, particularly on the cast skin

Classification: EN-GJS-400 (formerly GGG-40) EN-GJS-500 (formerly GGG-50)

EN-GJS-600 (formerly GGG-60) EN-GJS-700 (formerly GGG-70)

Cast iron with vermicular graphite (EN-GJV...)

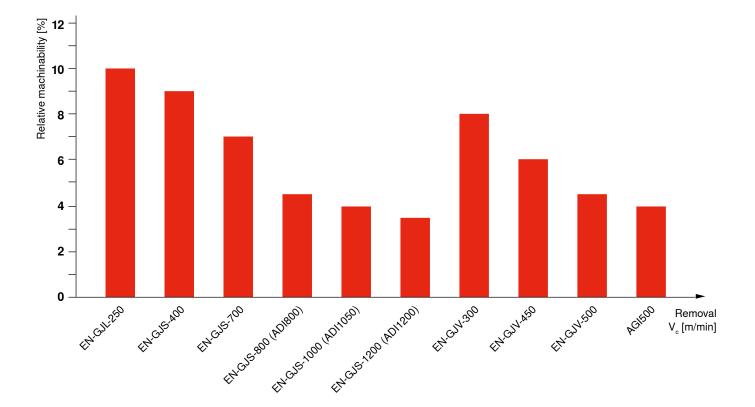
-

Tensile strength	Hardness	Elongation at break	Yield strength
300 – 575 N/mm ²	HB 170 – 400	0.5 – 5%	$R_p^{}$ 0.2 = 210 - 400 N/mm ²
Machinability:	omparable to GGG-4	IO EN-G IV-450 – difficult	approx -30% to GGG-40

EN-GJV-300 – good, comparable to GGG-40, EN-GJV-450 – difficult, approx. –30% to GGG-40 EN-GJV-500 – poor, approx. –45% to GGG-40

Classification: EN-GJV-300

EN-GJV-350 EN-GJV-400 EN-GJV-450 EN-GJV-500


Aluminium and other weight-reducing materials

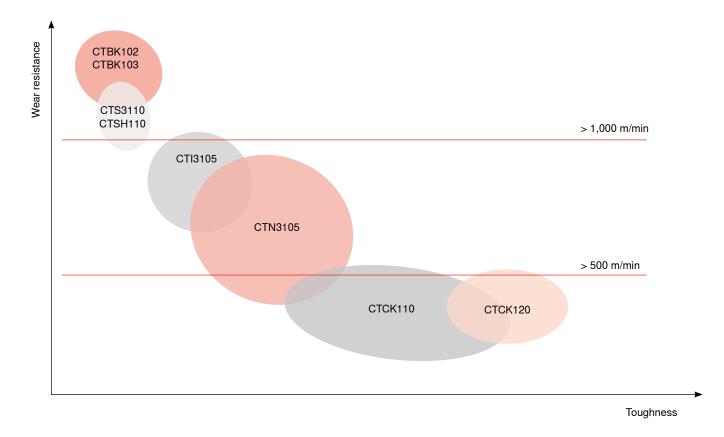
The most critical weight reductions in vehicles are the unsprung masses. Consequently, automotive manufacturers are investing a great deal in developing new composite solutions to make mass-produced products such as brake discs, and brake callipers lighter.

Here the manufacturers are placing their bets on composite brake discs. In addition to the aluminium version (pot) with cast iron (friction ring), solutions using carbon friction rings originate from motorsport and other high-end areas. Thanks to the extensive development work we have carried out over the past three decades, we are able to offer our comprehensive standard range for aluminium machining. Here you will find a broad spectrum of geometries, chip breakers and cutting material variants.

However, the latest state-of-the-art technology consists of deep-drawn steel pots that are inserted into the friction ring using a type of tooth profile. This machining technique is equivalent to hobbing and is known as "scudding" in the technical jargon.

Relative machinability – comparison of materials

Source: User manual A1 - P. Zobl


Hardness values comparison table

strength N/mm	Vickers HV	Brinell HB	Rockwell HRC	Shore C	Tensile strength N/mm	Vickers HV	Brinell HB	Rockwell HRC	Shore C
575	180	171			1845	560	532	53	63
595	185	176			1880	570	542	53.6	64
610	190	181			1920	580	551	54.1	65
625	195	185			1955	590	561	54.7	66
640	200	190	12		1995	600	570	55.2	67
660	205	195	13		2030	610	580	55.7	68
675	210	199	14		2070	620	589	56.3	69
690	215	204	15		2105	630	599	56.8	70
705	220	209	15	28	2145	640	608	57.3	71
720	225	214	16	20	2180	650	618	57.8	72
720	230	214	17	29	2210	660	628	58.3	72
755	235	223	18	23	2240	665	633	58.8	73
733	233	223	20.3	30	2240	670	638	59.3	/4
785	240	233	21.3	30	2310		643	59.8	75
785 800	245 250	233	21.3	31	2310	675 680	643 648	59.8 60.3	75 76
800 820					2350	680 685	648 653	60.3	
	255	242	23.1	32					77
835	260	247	24	33	2410	690	658	61.3	78
850	265	252	24.8		2450	695	663	61.7	79
865	270	257	25.6	<u>.</u>	2480	710	668	62.2	80
880	275	261	26.4	34	2520	720	678	62.6	81
900	280	268	27.1		2550	730	683	63.1	82
915	285	271	27.8	35	2590	740	693	63.5	
930	290	276	28.5		2630	750	703	63.9	83
950	295	280	29.2	36	2660	760	708	64.3	84
965	300	285	29.8	37	2700	770	718	64.7	85
995	310	295	31	38	2730	780	723	65.1	
1030	320	304	32.2	39	2770	790	733	65.5	86
1060	330	314	33.3	40	2800	800	738	65.9	
1095	340	323	34.3	41	2840	810	748	66.3	87
1125	350	333	35.5	42	2870	820	753	66.7	88
1155	360	342	36.6	43	2910	830	763	67	
1190	370	352	37.7	44	2940	840	768	67.4	89
1220	380	361	38.8	45	2980	850		67.7	
1255	390	371	39.8	46	3010	860		68.1	90
1290	400	380	40.8	47	3050	870		68.4	
1320	410	390	41.8	48	3080	880		68.7	91
1350	420	399	42.7		3120	890		69	
1385	430	409	43.6	49	3150	900		69.3	92
1420	440	418	44.5		3190	910		69.6	
1455	450	428	45.3	51	3220	920		69.9	
1485	460	437	46.1	52	3260	930		70.1	
1520	470	447	46.9	53					
1555	480	465	47.7	54					
1595	490	466	48.4						
1630	500	475	49.1	57					
1665	510	485	49.8	58					
1700	520	494	50.5	59					
1740	530	504	51.1	60					
1775	540	513	51.7	61					1001000
1810	550	523	52.3	62	Conversion v (02-2004)	alues are appi	roximate, bas	ed on DIN EN	ISO1826

Machining requirements – machining notes

In brake disc machining, the selection of the optimal cutting material solution is based on not only the material to be machined, but also on other parameters. It is dependent on the number of items to be machined, the machine output used and the component size in question.

Due to the different specifications, it is not possible to make a uniform recommendation. The following image shows the cutting material grades that are suitable for the various application areas.

Our range of cutting material grades extends from conventional carbide to ultra-hard cubic boron nitride (CBN) and thereby encompasses all cutting materials that are relevant for turning cast iron materials.

If a high level of toughness is required, as when machining high-alloy cast irons, GJV brake drums or other components with heavily interrupted cuts, cutting speeds of up to 500 m/min are recommended. In this case, the BLACKSTAR[™] CTCK110 and BLACKSTAR[™] CTCK120 grades are the first choice, particularly in the -M70 or -M50 chip breaker geometries that reduce cutting force.

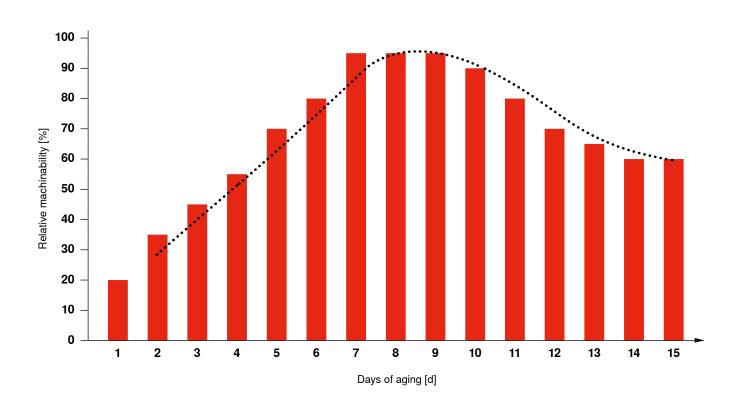
The universal silicon nitride ceramic grades manage the balancing act between changing material conditions and

economical cutting parameters of up to 1,000 m/min. As ceramic and CBN cutting material solutions are both dependent on a high cutting temperature for optimum results, we recommend switching to the CTI3105 SiAION ceramic grade, which is significantly harder, for higher quality cast irons.

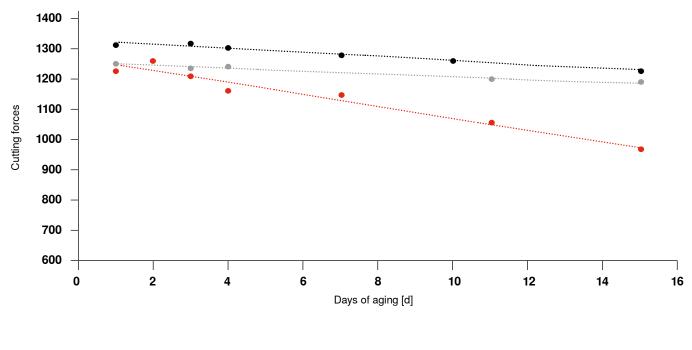
Composite or whisker ceramic inserts, as well as full-CBN inserts with high printability, are suited to use in the high-end sector with cutting speeds in excess of 1,000 m/min and maximum wear resistance. The cutting forces must be designed accordingly here (compression load rather than tensile load at the cutting edge). In addition, with CBN inserts, the cutting temperature should not fall below 600°C at the cutting edge – thereby ensuring process-security and tool life.

HV 1900 = higher brittleness = significantly more prone to breakage!

Relative machinability – not an easy comparison


It is particularly in the aging and curing process that the supposedly simple iron-carbon structure of "cast iron" shows its versatility.

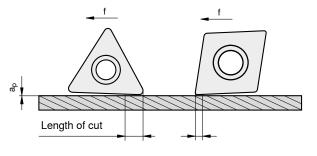
All steel and cast iron producers have previously carried out machinability studies on this, but using different approaches in each case, such as considering changes in the structural elements, or changes of physical measured values (hardness, layer thickness of the cast skin). The structural composition also does not display any measurable development that is able to explain, even at a rudimentary level, the reduction of up to 60% in tool life seen when using CBN cutting materials.


Many years of study have led us to conclude that the optimum time to use CBN is after a 4 to 5-day aging period. At this point, the cast iron is in a very consistent material

condition - no change in the power consumption or machining behaviour can be detected either between different batches or from different pallets in a casting series. Cubic boron nitride lives up to its reputation as a highquality cutting material and its use can reduce unit costs with mechanical machining. To date, it has not been possible to find a scientific explanation for why the effect is reversed again after around 10 days, and a 10-30% reduction in tool life can once again occur (depending on the structure, this may only occur again after 20 days, or not at all). However, all of our experience and tests suggest that, with the further volatilisation of the sulphur / structural formation, the manganese-sulphide layer that is so important can no longer be formed so quickly and thickly, particularly during machining of the peripheral zone, making the CBN more vulnerable to crater wear and therefore allowing the cutting inserts to wear more quickly.

Relative machinability based on the aging time (3 working weeks)

Development of the primary cutting forces

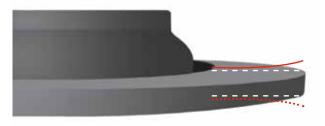

1st cut (with cast skin)2nd cut

3rd cut

Finish machining – technology advantages for greater quality and productivity

Pulling cuts during finish machining

The use of special indexable inserts made from ceramics and PCBN enables parallel finishing of brake discs. Instead of the conventional cut, this machining strategy relies on a pulling cut on the braking surface. This brings several advantages: Due to the small setting angle, a considerably larger section of the cutting edge can be used. This makes it possible to reduce the machining times of components significantly, while simultaneously obtaining high feeds with outstanding surface quality. In addition, due to the improved use of the cutting edge, the cutting edge wear is distributed over a greater area. The service life and process security can be significantly increased through the use of this cutting technique and high-quality cutting materials (Masterfinish[™] effect).


Pulling cut

Conventional cut

Rear wheel disc – conventional susceptibility to vibrations for brake discs without rear ventilation

Vibrations are particularly likely to occur in the case of thin brake discs with no internal ventilation as, when the braking surface finishing operation begins, the cutting pressure deforms the component. In order to avoid this, we draw on our experience in hard turning and use what is known as the multicut strategy. In this manner, for example, work starts with a feed of 0.35 mm/U on the outer diameter.

After the first 25 mm length of cut, the feed is increased to 0.45 mm/U and the feed is then throttled again both in the direction of the disc centre and at the end of the machining process. (Machining example: rear wheel disc with external diameter of 230 and machining length of approx. 60 mm – feed values based on a special Masterfinish geometry).

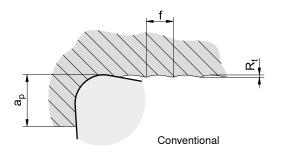
---- Theoretical strength Movement of the brake disc during machining

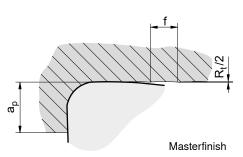
	(1) (2) (3)
(1	

Three zones on the machining length with the various feeds.

Finishing with Cermet:

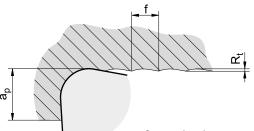
The generally "neglected application range" of cast iron machining for cermet cutting materials, the majority of which focus more on steel machining, brings particular finishing advantages on young castings, especially when using our CVD-coated indexable inserts (use with emulsion is also possible). The use of chip breakers and the extremely

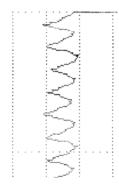

smooth surface of the polished edge layer, combined with positive clearance angles, means that the cutting forces and consequently their influence on component deformation can be so greatly reduced that components which are particularly susceptible to vibrations achieve the narrow tolerances with regard to vibrations more easily.

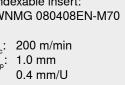

Masterfinish: special wiper geometry technology

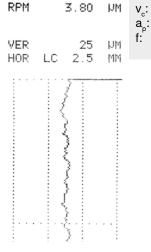
Functional principle / Benefits

Improved surface quality

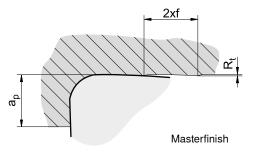

Given identical feed rates, the indexable insert with Masterfinish attains a R_a value that is many times better than a conventional indexable insert.

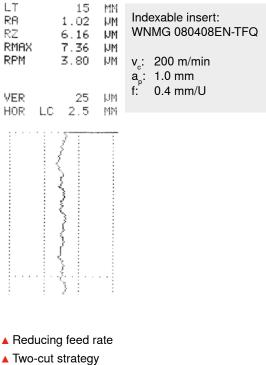

Shorter machining time


If the same R value is to be attained as with a standard indexable insert, it is possible to run at twice the feed rate



LT RA RZ RMAX	15 5.63 24.76 26.24	MM MU MU	Indexable insert: WNMG 080408EN-M70
RPM	14.68	MU	v _c : 200 m/min
			a _p : 1.0 mm
VER	25	ЫM	f: 0.4 mm/U
HOR	LC 2.5	MM	




Optimisation of surface through:

▲ Using a larger corner radius

▲ Masterfinish

using the indexable insert with Masterfinish (= lower times per piece!).

Maximum retention force, almost no wear: process-secure brake disc turning with the optimised C-clamp 2.0

www.ceratizit.com

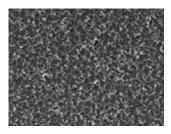
High-performance turning with ceramics & CBN

The service lives and volumes required in the series production of brake discs pose major challenges for cutting materials and clamping systems. Our first-class solutions guarantee process-secure turning of grey cast iron and other cast iron materials. For cutting speeds between 500 and 1,000 m/min, the universal CERATIZIT ceramic indexable inserts are the first choice. Our ultra-hard cutting materials made from composite ceramic and whisker ceramic, along with full-CBN inserts, cover the high-end sector with cutting speeds in excess of 1,000 m/min.

During high-performance turning of grey cast iron, high temperatures and chip removal speeds are generated, placing the clamping system, in particular, under excessive stress. Steel claws are only able to withstand these stresses for a short time. Consequently, CERATIZIT developed a carbide claw that can withstand even the most demanding usage for clamping the wear-resistant ceramic and CBN indexable inserts. This product has been successfully in use for many years, and in consultation with our customers we have now further optimised the C-clamp: the clamping situation and contact area have been improved and guarantee a stable insert position with optimum retention force, even under extreme stresses. C-clamp 2.0 is the most wear-resistant claw on the market and makes a significant contribution towards increasing productivity in brake disc machining.

Grades overview

Grade designatio		designation ANSI	Cutting material type	Application range P M K N S 01 05 10 15 20 25 30 35 40 45 50	н
CBN					
CTBK102	BH-K10	C3	В	•	
CTDR102	BH-H25	C2	В		•
CTBK103	BH-K10	C3	В	•	
CIBKI03	BH-H25	C2	В		٠
	BH-K10	C3	В	•	
CTBK104	BH-H25	C2	В		•
Mixed ceramic					
	СМ-К05	C4	S		
CTS3105	CM-H05	C4	S		
					-
CTSH110	CM-H10	C3	S		•
	CM-K10	C3	S		
Ceramic					
CTN3105	CN-K05	C4	Ν	•	
07/0105	CN-K05	C3	I		
CTI3105	CN-S05	-	I	c)


• Main application o Extended application

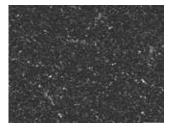
• •

Grade description

CTBK102

CBN

BH-K10 | BH-H25


Specifications:

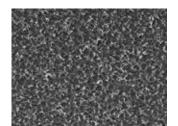
Composition: Cubic boron nitride (CBN)| 90 vol.% + metallic binder phase

Recommended use: The first choice for cast iron machining with full CBN.

CTBK103

CBN

BH-K10 | BH-H25


Specifications: Composition: Cubic boron nitride (CBN)| 90 vol.% + metallic binder phase

Recommended use: First choice for cast iron and sintered steels when finishing.

CTBK104

CBN

BH-K10 | BH-H25

Specifications: Composition: Cubic boron nitride (CBN)| 90 vol.% + metallic binder phase

Recommended use:

The first choice for cast iron machining with full CBN.

CTS3105

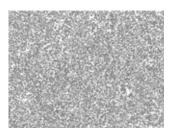
Mixed ceramic

•

Specifications: Composition: Al_2O_3 ; TiC | Grain size: > 1 μ m | Hardness: HV_{30} 2100

Recommended use:

CM-K05 | CM-H05


This mixed ceramic grade is suitable for hard precision turning of steel and for turning steel and cast iron or chilled iron rolls.

• •

• 0

CTSH110

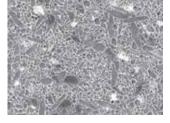
Mixed ceramic

CM-H10 | CM-K10

Specifications:

Composition: Al₂O₃; TiCN | Hardness: HV₃₀ 2150

Recommended use:


Mixed ceramic grade with very high cutting edge stability for machining of hardened materials. Suitable for slightly interrupted cuts.

CTN3105

Ceramic

Specifications: Composition: $\beta - Si_{3}N_{4}$ | Grain size: fine | Hardness: HV_{10} 1620

Recommended use: Universal silicon nitride grade for cast iron machining.

CTI3105

Ceramic

CN-K05 | CN-S05

Specifications: Composition: α , β – Sialon | Hardness: HV₁₀ 1900

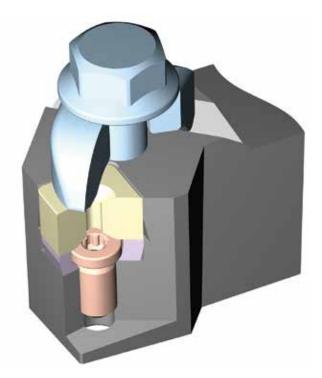
Recommended use:

The hardest sialon on the market – high-performance grade for machining of cast iron and Ni-based alloys.

C-clamp 2.0

Clamping situation

- ▲ Carbide clamping elements, almost no noticeable wear
- ▲ Optimised anti-rotation lock
- ▲ High tightening torque using M8 screw



- ▲ Claw fully covers the hollow in the insert
- ▲ Large contact area in the clamping zone between the claw/indexable insert hollow
- ▲ No wear in the area of the clamping zone

The C-clamp 2.0 principle

- ▲ The structural design and a tightening torque of 20 Nm guarantee maximum retention force
- ▲ Stable indexable insert position throughout the entire duration of use, even under extreme stresses

- Clamping elementIndexable insertInsert seat
- Screw

Advantages and benefits of the optimised clamping system

At a glance

Advantages	Benefits
M8 hexagon head screw	 No contamination of inner profile Protective surface treatment No weakening of the core diameter
Tried-and-tested wedge clamping method	 No deposits in the claw groove Impossible for the claw to jam Many years of system experience in the standard
Solid carbide claw	 No eroding of the steel finger over the armouring No screw breakage
Larger contact area	 Low setting behaviour Increased surface pressure Optimised positioning for change of cutting direction
Higher tightening torque 20 Nm	▲ 20% more clamping force

C-clamp assembly instructions

1. TOOL - DELIVERY CONDITION WITH PRE-ASSEMBLY

The series-production tools are supplied as standard, as previously, with pre-assembled insert seat (1), pressedin centring pin (2) and the grub screw (3).

We can also deliver without pre-assembly in response to customer requests.

Place the insert seat into the mount and tighten it using the appropriate screws (M6 x 13 / T20IP).

Check the insert mount again for contamination before installation - if there is any contamination present, we recommend blowing out the thread and seat using compressed air!

Here you see a double holder with insert seat fitted.

2. SCREWING IN INSERT SEAT

3) SCREWING IN GRUB SCREW

In order to prevent contamination in the thread of the clamping screw, the new C-clamp system uses a grub screw which is screwed into a separate threaded section from below.

4) ATTACHING THE CLAMPING CLAW

The clamping claw can now be fitted with the clamping screw and installed.

Tilting claw for inserting the indexable insert.

The sealed threaded holes can clearly be seen here!

Thanks to the option of tilting and sliding off the new claw, this remains free and can be raised for installation of the indexable insert.

5) CLAMPING THE INDEXABLE INSERT

The last and most important step in the assembly process is clamping the indexable insert.

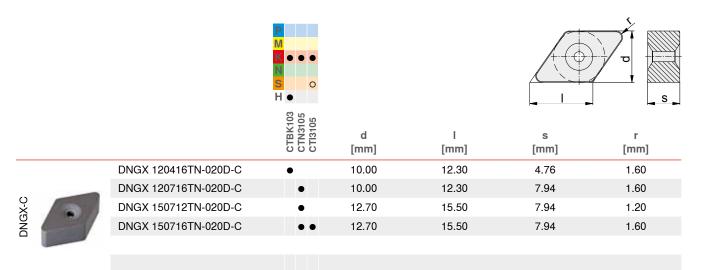
Place the cutting insert into the seat as usual and press it against the mating surfaces. The new C-clamp 2.0 then completes the final positioning and holding down process itself. 6) CLAMPING WITH 20 NM TORQUE

Finally, the indexable insert is clamped again using a defined torque.

Due to the significantly stronger M8 hexagon head screw and the more even support area, it has been possible to increase this torque to 20 Nm!

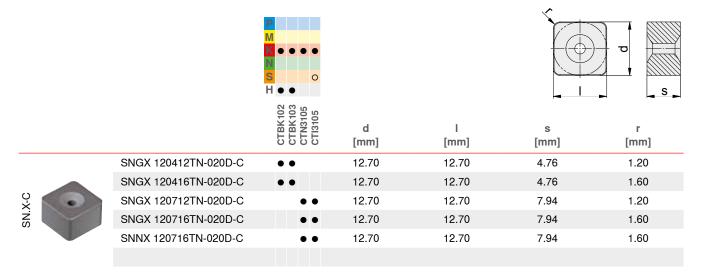
7) READY FOR TAKE-OFF

The tool is now equipped with the new C-clamp 2.0 system and ready for tomorrow's requirements!



CNGX-C / CNNX-C

			M M S O H				
			CTBK103 CTN3105 CTI3105	d [mm]	ا [mm]	s [mm]	r [mm]
		CNGX 120412TN-020D-C	•	12.70	12.90	4.76	1.20
		CNGX 120416TN-020D-C	•	12.70	12.90	4.76	1.60
CN.X-C	-	CNGX 120712TN-020D-C	• •	12.70	12.90	7.94	1.20
S.		CNNX 120712TN-020D-C	•	12.70	12.90	7.94	1.20
		CNGX 120716TN-020D-C	• •	12.70	12.90	7.94	1.60
		CNNX 120716TN-020D-C	• •	12.70	12.90	7.94	1.60

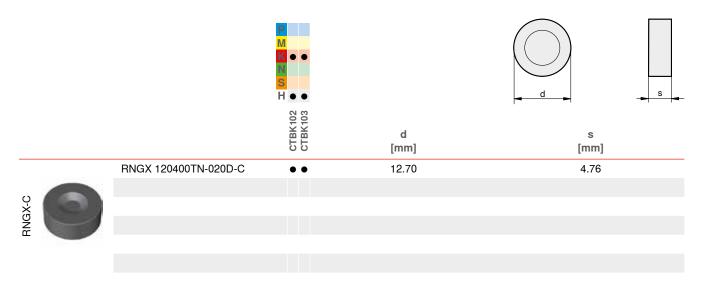

• Main application • Extended application

DNGX-C

• Main application • Extended application

SNGX-C / SNNX-C

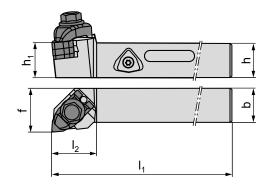
• Main application • Extended application


٠

WNGX-C / WNNX-C

			P o o o o o o o o o o o o o o o o o o o				
			CTBK102 CTBK103 CTN3105 CTI3105 CTI3105	d [mm]	ا [mm]	s [mm]	r [mm]
		WNGX 080408TN-020D-C	•	12.70	8.69	4.76	0.80
		WNGX 080416TN-020D-C	• • •	12.70	8.69	4.76	1.60
WN.X-C	•	WNGX 080712TN-020D-C	• •	12.70	8.69	7.94	1.20
ŴN.		WNGX 080716TN-020D-C	• •	12.70	8.69	7.94	1.60
-		WNNX 080716TN-020D-C	•	12.70	8.69	7.94	1.60

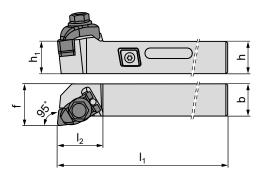
• Main application • Extended application


RNGX-C

Main application
 O Extended application

DWLN..

h [mm]	Type, Designation		h, [mm]	b [mm]	ا _ر [mm]	ا ₂ [mm]	f [mm]	\bigcirc	S.
25	DWLNL 2525 M08-C207	L	25	25	150	32	32	WN.X 08	E01
25	DWLNR 2525 M08-C207	R	25	25	150	32	32	WN.X 08	E01

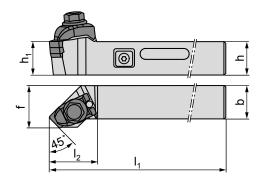

11819787

11844339

DCLN..

h [mm]	Type, Designation		h ₁ [mm]	b [mm]	l, [mm]	ا [mm]	f [mm]	\bigcirc	S.
25	DCLNL 2525 M12-C207	L	25	25	150	35	32	CN.X 12	E01
25	DCLNR 2525 M12-C207	R	25	25	150	35	32	CN.X 12	E01

E01



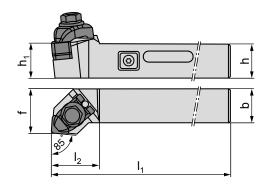
11844332 / 11844333

DSSN..

h [mm]	Type, Designation		h, [mm]	b [mm]	l₁ [mm]	ا ₂ [mm]	f [mm]	0	
25	DSSNL 2525 M12-C207	L	25	25	150	35	32	SN.X 12	E01
25	DSSNR 2525 M12-C207	R	25	25	150	35	32	SN.X 12	E01

E01

11819787


11897356

11844339

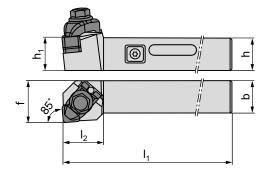
11844328 / 11844329

DSXN..

h [mm]	Type, Designation		h, [mm]	b [mm]	ا ₁ [mm]	ا [mm]	f [mm]	0	
25	DSXNL 2525 M12-C207	L	25	25	150	35	32	SN.X 12	E01
25	DSXNR 2525 M12-C207	R	25	25	150	35	32	SN.X 12	E01

E01

11819787

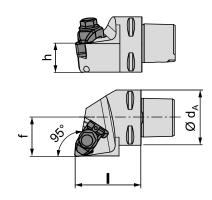

11897356

11844339

11844328 / 11844329

DSYN..

h [mm]	Type, Designation		h, [mm]	b [mm]	ا _ر [mm]	ا [mm]	f [mm]	0	S.
25	DSYNL 2525 M12-C207	L	25	25	150	36	32	SN.X 12	E01
25	DSYNR 2525 M12-C207	R	25	25	150	36	32	SN.X 12	E01



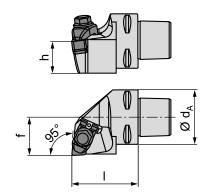
11819787

11897356

PSC50-DWLN..

h [mm]	Type, Designation		d _a [mm]	l [mm]	f [mm]	\bigcirc	S.
25	PSC50-DWLNL 35060 08-C207	L	50	60	35	WN.X 08	E01
25	PSC50-DWLNR 35060 08-C207	R	50	60	35	WN.X 08	E01

E01

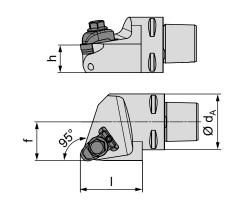

11819787

11897356

11844339

PSC50-DCLN..

h [mm]	Type, Designation		d _a [mm]	l [mm]	f [mm]	\bigcirc	S.
28,50	PSC50-DCLNL 35060 12-C207	L	50	60	35	CN.X 12	E01
28,50	PSC50-DCLNR 35060 12-C207	R	50	60	35	CN.X 12	E01

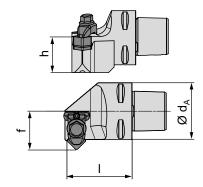

11897356

PSC50-DRGN..

h [mm]	Type, Designation		d _a [mm]	l [mm]	f [mm]	\bigcirc	
25	PSC50-DRGNL 35075 12-C204	L	50	75	35	RNGX 12	E01
25	PSC50-DRGNR 35075 12-C204	R	50	75	35	RNGX 12	E01

E01

11819787

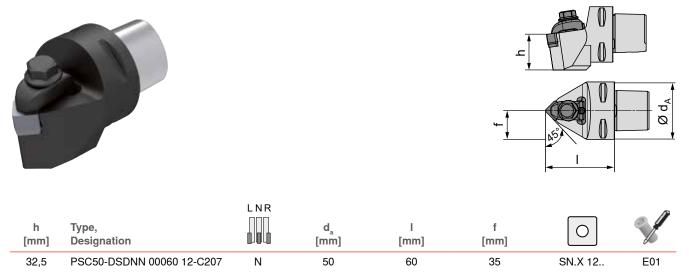

11897356

11844339

11933596

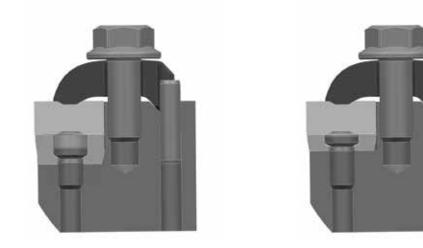
PSC50-DSSN..

			LNR					<u>A</u>
[h mm]	Type, Designation		d _a [mm]	l [mm]	f [mm]	Ο	S.
	32	PSC50-DSSNN 35060 12-C207	Ν	50	60	35	SN.X 12	E01



PSC50-DSDN..

E01



Spare parts

Insert seats

Shape	-T3	-X7
0	U-SN12T316-C M6	U-SN12X716-C M6
\bigcirc	U-CN12T316-C M6	U-CN12X716-C M6
\bigcirc	U-WN08T316-C M6	U-WN08X716-C M6
\bigcirc	U-DN12T316-C M6 U-DN15T316-C M6	U-DN12X716-C M6 U-DN15X716-C M6
\land	U-TN16T316-C M6	U-TN16X716-C M6
\bigcirc	U-RN12T300-C M6	U-RN12X700-C M6

CNGX / CNNX for ISO holders

		P a a a a a a a a a a a a a a a a a a a				
		CTN3105 CTI3105	d [mm]	l [mm]	s [mm]	r [mm]
	CNGX 120708TN-020D	•	12.70	12.90	7.94	0.80
~	CNGX 120712TN-020D	• •	12.70	12.90	7.94	1.20
CN.X	CNGX 120716TN-020D	••	12.70	12.90	7.94	1.60
5	CNNX 120716TN-020D	• •	12.70	12.90	7.94	1.60
	CNGX 160716TN-020D	• •	15.88	16.10	7.94	1.60

• Main application • Extended application

DNGX for ISO holders

		₽ M N S H				
		CTN3105	d [mm]	l [mm]	s [mm]	r [mm]
	DNGX 120712TN-020D	•	10.00	12.30	7.94	1.20
0	DNGX 150712TN-020D	•	12.70	15.50	7.94	1.20
DNGX	DNGX 150716TN-020D	•	12.70	15.50	7.94	1.60

• Main application • Extended application

SNGX / SNNX for ISO holders

		R IIII M M M IIII S IIII H H				
		CTN3105 CTI3105	d [mm]	l [mm]	s [mm]	r [mm]
	SNGX 120712TN-020D	• •	12.70	12.70	7.94	1.20
	SNGX 120716TN-020D	• •	12.70	12.70	7.94	1.60
SN.X	SNNX 120716TN-020D	• •	12.70	12.70	7.94	1.60
	SNGX 150716TN-020D	• •	15.88	15.88	7.94	1.60
	SNGX 150716TN-040D	٠	15.88	15.88	7.94	1.60

• Main application • Extended application

Wear-resistant, stable and tough: The Maxilock D tool holder equipped with cutting inserts made from coated carbide

www.ceratizit.com

Safe turning with carbide grades

The coated BLACKSTAR[™] carbide cutting materials from CERATIZIT are universal, durable and cover a wide range of applications for turning cast iron materials. In brake disc machining, they are used whenever

high toughness and maximum cutting speeds of 500 m/min are called for, such as when machining high-alloy cast irons. Here, the CTCK110 cutting material grade is recommended for continuous cuts under stable conditions. The CTCK120 grade is the first choice for unstable, difficult conditions. It ensures stable processes, even during roughing and finishing of components with heavily interrupted cuts, such as HGV brake drums. In brake disc machining, the wear-resistant centre-hole inserts have become particularly well established in combination with the Maxilock D tool holder. The tool holder's double clamping action, robust clamping claw and optimised insert seat enable exact positioning of the indexable insert and provide a high level of process security, even under tensile load.

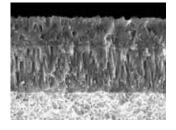
The combination of secure clamping and a suitable cutting insert made from the appropriate cutting material for the application opens up huge savings potential in roughing and finishing, as well as in the machining of alloy castings.

Grades overview

Standard desig		esignation	Cutting material	Application range		Ρ	М	кι	N S	Н
Grade designation	on ISO	ANSI	type	01 05 10 15 20 25 30 35 4	0 45 50					
Coated carbide										
	HC-K10	C3	С					•		
CTCK110	HC-P05	C8	С			0				
CTCK120	HC-K20	C2	С					•		
CICKIZO	HC-P10	C8	С			0				
CTEP110	HC-P10	C8	E			•				
GIEFIIU	HC-K05	C4	Е					0		

• Main application • Extended application

0


Ο

Ο

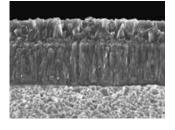
Grade description

CTCK110

Coated carbide

HC-K10 | HC-P05

Specifications:


Composition: Co 5.0%; mixed carbide 2.0%; WC balance | Grain size: submicron | Hardness: $HV_{_{30}}$ 1810 | Layer system: CVD TiCN-Al₂O₃

Recommended use: The most wear-resistant grade for working on cast iron materials with high cutting speeds

in a continuous cut.

CTCK120

Coated carbide

HC-K20 | HC-P10

Specifications: Composition: Co 6.0%, TaC 2.0%, WC balance | Grain size: 1 μ m | Hardness: HV₃₀ 1630 | Layer system: CVD TiCN-Al₂O₃

Recommended use: The grade for cast iron

The grade for cast iron machining, with high toughness reserves for difficult conditions and interrupted cuts.

CTEP110

Colorstar

HC-P10 | HC-K05

Specifications:

Composition: Co/Ni 12.2%; TC 15.0%; TaNbC 10.0%; TiCN balance | Grain size: fine | Hardness: HV₃₀ 1620 | Layer system: CVD TiCN-Al₂O₃ Multilayer

Recommended use:

The cermet grade with reserves of toughness for finishing at high cutting speeds.

CCGT.. / CCMT.. / CNMA.. / CNMG..

		P O O O M					
		CTCK110 CTCK120 CTEP110	d	1	S	r	d ₁
		CTI CT	[mm]	[mm]	[mm]	[mm]	[mm]
	CCGT 060202EN-CF05	•	6.35	6.40	2.38	0.20	2.80
1	CCGT 060204EN-CF05	•	6.35	6.40	2.38	0.40	2.80
CF05	CCGT 09T302EN-CF05	•	9.52	9.70	3.97	0.20	4.40
Р	CCGT 09T304EN-CF05	•	9.52	9.70	3.97	0.40	4.40
	CCGT 09T308EN-CF05	•	9.52	9.70	3.97	0.80	4.40
	CNMG 120404EN-CF20	•	12.70	12.90	4.76	0.40	5.16
	CNMG 120408EN-CF20	•	12.70	12.90	4.76	0.80	5.16
-CF20							
	CCMT 060204EN-CF55	•	6.35	6.40	2.38	0.40	2.80
	CCMT 09T304EN-CF55	•	9.52	9.70	3.97	0.40	4.40
CF55	CCMT 09T308EN-CF55	٠	9.52	9.70	3.97	0.80	4.40
ң Е	CCMT 120404EN-CF55	•	12.70	12.90	4.76	0.40	5.50
	CCMT 060204EN-SM	• •	6.35	6.40	2.38	0.40	2.80
	CCMT 060208EN-SM	• •	6.35	6.40	2.38	0.80	2.80
	CCMT 09T304EN-SM	• •	9.52	9.70	3.97	0.40	4.40
NS-	CCMT 09T308EN-SM	• •	9.52	9.70	3.97	0.80	4.40
	CCMT 09T312EN-SM	•	9.52	9.70	3.97	1.20	4.40
	CCMT 120404EN-SM	• •	12.70	12.90	4.76	0.40	5.50
	CCMT 120408EN-SM	• •	12.70	12.90	4.76	0.80	5.50
	CNMA 120408EN	• •	12.70	12.90	4.76	0.80	5.16
	CNMA 120412EN	••	12.70	12.90	4.76	1.20	5.16
	CNMA 120416EN	•	12.70	12.90	4.76	1.60	5.16
-CNMA	CNMA 160608EN	••	15.88	16.10	6.35	0.80	6.35
^ζ	CNMA 160612EN	• •	15.88	16.10	6.35	1.20	6.35
	CNMA 160616EN	• •	15.88	16.10	6.35	1.60	6.35
	CNMA 190612EN	• •	19.05	19.30	6.35	1.20	7.94

19.05

• •

19.30

6.35

• Main application • Extended application

7.94

1.60

CNMA 190616EN

CCGT.. / CCMT.. / CNMA.. / CNMG..

			P O O O M O O N O O S O O H					
			CTCK110 CTCK120 CTEP110	d [mm]	l [mm]	s [mm]	r [mm]	d ₁ [mm]
		CNMG 120404EN-TFQ	٠	12.70	12.90	4.76	0.40	5.16
		CNMG 120408EN-TFQ	•	12.70	12.90	4.76	0.80	5.16
-TFQ		CNMG 120412EN-TFQ	•	12.70	12.90	4.76	1.20	5.16
		CNMG 090308EN-TM	•	9.52	9.70	3.81	0.80	3.81
MT-	A							
		CNMG 120408EN-M50	• •	12.70	12.90	4.76	0.80	5.16
-M50	<u>)</u>	CNMG 120412EN-M50	••	12.70	12.90	4.76	1.20	5.16
		CNMG 120408EN-M70	• •	12.70	12.90	4.76	0.80	5.16
		CNMG 120412EN-M70	• •	12.70	12.90	4.76	1.20	5.16
		CNMG 120416EN-M70	• •	12.70	12.90	4.76	1.60	5.16
2	14	CNMG 160608EN-M70	••	15.88	16.10	6.35	0.80	6.35
- M70	4	CNMG 160612EN-M70	• •	15.88	16.10	6.35	1.20	6.35
		CNMG 160616EN-M70	••	15.88	16.10	6.35	1.60	6.35
		CNMG 190612EN-M70	• •	19.05	19.30	6.35	1.20	7.94
		CNMG 190616EN-M70	• •	19.05	19.30	6.35	1.60	7.94

• Main application • Extended application

DCGT.. / DCMT.. / DNMA.. / DNMG..

					S S D		s s
		CTCK110 CTCK120 CTEP110	d [mm]	l [mm]	s [mm]	r [mm]	d ₁ [mm]
	DCGT 070202EN-CF05	•	6.35	7.75	2.38	0.20	2.80
	DCGT 070204EN-CF05	•	6.35	7.75	2.38	0.40	2.80
CF05	DCGT 11T302EN-CF05	•	9.52	11.60	3.97	0.20	4.40
Ŷ	DCGT 11T304EN-CF05	•	9.52	11.60	3.97	0.40	4.40
	DCGT 11T308EN-CF05	•	9.52	11.60	3.97	0.80	4.40
	DCMT 070202EN-CF55	•	6.35	7.75	2.38	0.20	2.80
	DCMT 070204EN-CF55	•	6.35	7.75	2.38	0.40	2.80
CF55	DCMT 11T304EN-CF55	•	9.52	11.60	3.97	0.40	4.40
Ŷ	DCMT 11T308EN-CF55	•	9.52	11.60	3.97	0.80	4.40
	DCMT 070204EN-SM	• •	6.35	7.75	2.38	0.40	2.80
	DCMT 070208EN-SM	• •	6.35	7.75	2.38	0.80	2.80
NS S	DCMT 11T304EN-SM	••	9.52	11.60	3.97	0.40	4.40
	DCMT 11T308EN-SM	• •	9.52	11.60	3.97	0.80	4.40
	DNMA 150408EN	•	12.70	15.50	4.76	0.80	5.16
	DNMA 150608EN	• •	12.70	15.50	6.35	0.80	5.16
	DNMA 150612EN	• •	12.70	15.50	6.35	1.20	5.16
	DNMG 150608EN-M50	• •	12.70	15.50	6.35	0.80	5.16
10-2.4	DNMG 150612EN-M50	• •	12.70	15.50	6.35	1.20	5.16
M50							
	DNMG 150608EN-M70	• •	12.70	12.90	4.76	0.80	5.16
2mg	DNMG 150612EN-M70	• •	12.70	12.90	4.76	1.20	5.16
M70	DNMG 150612EN-M70	• •	12.70	12.90	4.76	1.60	5.16
	DNMG 150604EN-TFQ	•	12.70	15.50	6.35	0.40	5.16
-TFQ	DNMG 150608EN-TFQ	•	12.70	15.50	6.35	0.80	5.16

SCGT.. / SCHN.. / SCMT.. / SNMA.. / SNMG..

					D		
		CTCK110 CTCK120 CTEP110	d [mm]	l [mm]	s [mm]	r [mm]	d ₁ [mm]
	SCGT 09T304EN-CF05	•	9.52	9.52	3.97	0.40	4.40
	SCGT 09T308EN-CF05	•	9.52	9.52	3.97	0.80	4.40
-CF05							
	SCMT 09T304EN-CF55	•	9.52	9.52	3.97	0.40	4.40
	SCMT 09T308EN-CF55	•	9.52	9.52	3.97	0.80	4.40
-CF55							
	SCMT 09T304EN-SM	• •	9.52	9.52	3.97	0.40	4.40
	SCMT 09T308EN-SM	• •	9.52	9.52	3.97	0.80	4.40
NS CO	SCMT 120408EN-SM	• •	12.70	12.70	4.76	0.80	5.50
ν	SCMT 120412EN-SM	• •	12.70	12.70	4.76	1.20	5.30
			10 70	10.70			5.40
	SNMA 120408EN	• •	12.70	12.70	4.76	0.80	5.16
	SNMA 120412EN	••	12.70	12.70	4.76	1.20	5.16
MA	SNMA 120416EN	••	12.70	12.70	4.76	1.20	5.16
SNMA	SNMA 150612EN	••	15.88	15.88	6.35 6.35	1.20	6.35 6.35
	SNMA 150616EN	••	15.88	15.88		1.60	
	SNMA 190612EN SNMA 190616EN	••	19.05 19.05	19.05 19.05	6.35 6.35	1.20 1.60	7.94 7.94
	SNMA 190616EN SNMG 120408EN-M70		19.05	19.05	4.76	0.80	5.16
	SNMG 120408EN-M70	••	12.70	12.70	4.76	1.20	5.16
	SNMG 120412EN-M70		15.88	15.88	6.35	1.20	6.35
-M70	SNMG 150616EN-M70	• •	15.88	15.88	6.35	1.60	6.35
	SNMG 190612EN-M70	• •	19.05	19.05	6.35	1.20	7.94
	SNMG 190616EN-M70	••	19.05	19.05	6.35	1.60	7.94
	SCHN 090407EN-Q		9.52	9.52	4.76	0.70	-
			0.02	0.02	1.10	0.70	

• Main application o Extended application

TCGT.. / TCMT.. / TNMA.. / TNMG..

			,				,60°∕	
			P O O O M S H			D		ip
			CTCK110 CTCK120 CTEP110	d [mm]	l [mm]	s [mm]	r [mm]	d ₁ [mm]
		TCGT 110202EN-CF05	•	6.35	11.00	2.38	0.20	2.80
	000	TCGT 110204EN-CF05	•	6.35	11.00	2.38	0.40	2.80
35	KO/	TCGT 110208EN-CF05	•	6.35	11.00	2.38	0.80	2.80
-CF05	2.2	TCGT 16T304EN-CF05	•	9.52	16.50	3.97	0.40	4.40
		TNMG 160404EN-CF20	•	9.52	16.50	4.76	0.40	3.81
		TNMG 160408EN-CF20	•	9.52	16.50	4.76	0.80	3.81
-CF20		TNMG 160412EN-CF20	•	9.52	16.50	4.76	1.20	3.81
<u></u>				0.05		0.00		
		TCMT 110204EN-CF55 TCMT 16T308EN-CF55	•	6.35 9.52	11.00 16.50	2.38 3.97	0.20	2.80 4.40
-CF55	V							
		TCMT 110204EN-SM	• •	6.35	11.00	2.38	0.40	2.80
		TCMT 110208EN-SM	• •	6.35	11.00	2.38	0.80	2.80
-SM	0/	TCMT 16T304EN-SM	• •	9.52	16.50	3.97	0.40	4.40
Ņ		TCMT 16T308EN-SM	• •	9.52	16.50	3.97	0.80	4.40
		TCMT 16T312EN-SM	٠	9.52	16.50	3.97	1.20	4.40
		TNMA 160408EN	• •	9.52	16.50	4.76	0.80	3.81
		TNMA 160412EN	• •	9.52	16.50	4.76	1.20	3.81
TNMA	5	TNMA 160416EN	• •	9.52	16.50	4.76	1.60	3.81
TN		TNMA 220408EN	• •	12.70	22.00	4.76	0.80	5.16
		TNMA 220412EN	• •	12.70	22.00	4.76	1.20	5.16
		TNMA 220416EN	• •	12.70	22.00	4.76	1.60	5.16
		TNMG 160408EN-M70	• •	9.52	16.50	4.76	0.80	3.81
		TNMG 160412EN-M70	• •	9.52	16.50	4.76	1.20	3.81
-M70	VOY	TNMG 220408EN-M70	• •	12.70	22.00	4.76	0.80	5.16
Σ	T	TNMG 220412EN-M70	• •	12.70	22.00	4.76	1.20	5.16
		TNMG 220416EN-M70	• •	12.70	22.00	4.76	1.60	5.16

VCGT.. / VCMT.. / VNMG..

		POOOO M O N S H			35.		5 S
		CTCK110 CTCK120 CTEP110	d [mm]	l [mm]	s [mm]	r [mm]	d, [mm]
	VCMT 160404EN-SM	• •	9.52	16.60	4.76	0.40	4.40
	VCMT 160408EN-SM	• •	9.52	16.60	4.76	0.80	4.40
SM							
	VCGT 110302EN-CF05	•	6.35	11.10	3.18	0.20	2.80
	VCGT 110304EN-CF05	•	6.35	11.10	3.18	0.40	2.90
CF05	VCGT 160404EN-CF05	٠	9.52	16.60	4.76	0.40	4.40
Ģ	VCGT 160408EN-CF05	•	9.52	16.60	4.76	0.80	4.40
	VCMT 110304EN-CF55	•	6.35	11.10	3.18	0.40	2.90
	VCMT 160404EN-CF55	•	9.52	16.60	4.76	0.40	4.40
-CF55	VCMT 160408EN-CF55	•	9.52	16.60	4.76	0.80	4.40
	VNMG 160408EN-M50	•	9.52	16.60	4.76	0.80	3.81
-M50	VNMG 160412EN-M50	•	9.52	16.60	4.76	1.20	3.81
4							

Main application
 O Extended application

WNMA.. / WNMG..

					(b s
		CTCK110 CTCK120 CTEP110	d [mm]	ا [mm]	s [mm]	r [mm]	d, [mm]
	WNMA 080408EN	••	12.70	8.69	4.76	0.80	5.16
	WNMA 080412EN	• •	12.70	8.69	4.76	1.20	5.16
	WNMA 080416EN	• •	12.70	8.69	4.76	1.60	5.16
	WNMG 060404EN-CF20	٠	9.52	6.50	4.76	0.40	3.81
	WNMG 060408EN-CF20	•	9.52	6.50	4.76	0.80	3.81
-CF20	WNMG 080408EN-CF20	•	12.70	8.69	4.76	0.80	5.16
	WNMG 060408EN-TFQ	•	9.52	6.50	4.76	0.80	3.81
	WNMG 080404EN-TFQ	•	12.70	8.69	4.76	0.40	5.16
-IFa	WNMG 080408EN-TFQ	•	12.70	8.69	4.76	0.80	5.16
	WNMG 080408EN-M50	• •	12.70	8.69	4.76	0.80	5.16
-M50	WNMG 080412EN-M50	••	12.70	8.69	4.76	1.20	5.16
	WNMG 080408EN-M70	• •	12.70	8.69	4.76	0.80	5.16
States and the second s	WNMG 080412EN-M70	• •	12.70	8.69	4.76	1.20	5.16
P VOY	WNMG 080416EN-M70	• •	12.70	8.69	4.76	1.60	5.16
-M-							

• Main application • Extended application

DCBN..

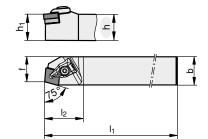


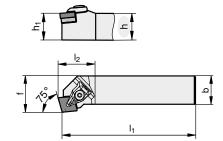
Image shows right-hand version

h [mm]	Type, Designation		h, [mm]	b [mm]	ا _ر [mm]	ا _ء [mm]	f [mm]	\bigcirc	S.
25	DCBNR 2525 M12	R	25	25	150	32	22	CN 1204	E01
25	DCBNL 2525 M12	L	25	25	150	32	22	CN 1204	E01

E01

11224545

11224494


11211558

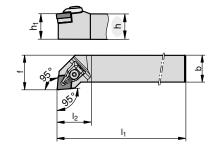
11224503

DCKN..

Image shows right-hand version

h [mm]	Type, Designation		h, [mm]	b [mm]	ا _ر [mm]	ا ₂ [mm]	f [mm]	Ο	S.
25	DCKNR 2525 M12	R	25	25	150	29	32	CN 1204	E01
25	DCKNL 2525 M12	L	25	25	150	29	32	CN 1204	E01

11224545


11224494

11211558

11224503

DCLN..

h [mm]	Type, Designation		h, [mm]	b [mm]	l, [mm]	ا [mm]	f [mm]	\bigcirc	
20	DCLNR 2020 K09	R	20	20	125	24	25	CN 0903	E01
20	DCLNL 2020 K09	L	20	20	125	24	25	CN 0903	E01
20	DCLNR 2020 K12	R	20	20	125	32	25	CN 1204	E02
20	DCLNL 2020 K12	L	20	20	125	32	25	CN 1204	E02
25	DCLNL 2525 M12	R	25	25	150	32	32	CN 1204	E02
25	DCLNR 2525 M12	L	25	25	150	32	32	CN 1204	E02
25	DCLNR 2525 M16	R	25	25	150	38	32	CN 1606	E03
25	DCLNL 2525 M16	L	25	25	150	38	32	CN 1606	E03
32	DCLNR 3232 P16	R	32	32	170	37	40	CN 1606	E03
32	DCLNL 3232 P16	L	32	32	170	37	40	CN 1606	E03
32	DCLNR 3232 P19	R	32	32	170	42	40	CN 1906	E04
32	DCLNL 3232 P19	L	32	32	170	42	40	CN 1906	E04

S.	4	Shine -	0	>
E01	11227306	11227305	11577861	11227314
E02	11224545	11224494	11211558	11224503
E03	11227322	11227318	11227315	11227323
E04	11227325	11227318	11227316	11227323

DDJN..

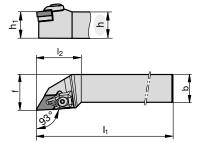
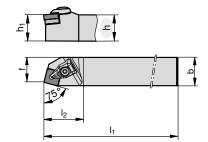


Image shows right-hand version


h [mm]	Type, Designation		h, [mm]	b [mm]	ار [mm]	ا _ء [mm]	f [mm]	\bigcirc	
20	DDJNR 2020 K11	R	20	20	125	40	25	DN 1104	E01
20	DDJNL 2020 K11	L	20	20	125	40	25	DN 1104	E01
20	DDJNR 2525 M11	R	25	25	150	40	32	DN 1104	E01
20	DDJNL 2525 M11	L	25	25	150	40	32	DN 1104	E01
25	DDJNR 2020 K15	R	20	20	125	40	25	DN 1506	E02
25	DDJNL 2020 K15	L	20	20	125	40	25	DN 1506	E02
25	DDJNR 2525 M15	R	25	25	150	40	32	DN 1506	E02
25	DDJNL 2525 M15	L	25	25	150	40	32	DN 1506	E02

DSBN..

Image shows right-hand version

h [mm]	Type, Designation		h, [mm]	b [mm]	l, [mm]	ا [mm]	f [mm]	0	
20	DSBNR 2020 K12	R	20	20	125	35	17	SN 1204	E01
20	DSBNL 2020 K12	L	20	20	125	35	17	SN 1204	E01
25	DSBNR 2525 M12	R	25	25	150	35	22	SN 1204	E01
25	DSBNL 2525 M12	L	25	25	150	35	22	SN 1204	E01
25	DSBNR 2525 M15	R	25	25	150	43	22	SN 1506	E02
25	DSBNL 2525 M15	L	25	25	150	43	22	SN 1506	E02
32	DSBNR 3232 P15	R	32	32	170	42	27	SN 1506	E02
32	DSBNL 3232 P15	L	32	32	170	42	27	SN 1506	E02
32	DSBNR 3232 P19	R	32	32	170	48	27	SN 1906	E03
32	DSBNL 3232 P19	L	32	32	170	48	27	SN 1906	E03

S.		and the	Ø	>
E01	11224545	11224494	11211561	11224503
E02	11227322	11227318	11247269	11227323
E03	11227325	11227318	11227317	11227323

DSDN..

h [mm]	Type, Designation		h ₁ [mm]	b [mm]	ا _، [mm]	ا ₂ [mm]	f [mm]	0	
20	DSDNN 2020 K12	Ν	20	20	125	38	10	SN 1204	E01
25	DSDNN 2525 M12	Ν	25	25	150	38	12.5	SN 1204	E01

11224545

11224494

11211561

11224503

DSKN..

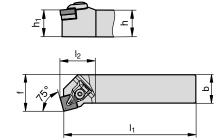


Image shows right-hand version

h [mm]	Type, Designation		h ₁ [mm]	b [mm]	l₁ [mm]	ا [mm]	f [mm]	0	S.
25	DSKNR 2525 M12	R	25	25	150	31	32	SN 1204	E01
25	DSKNL 2525 M12	L	25	25	150	31	32	SN 1204	E01

E01

11224545

11224494

11211561

11224503

DSSN..

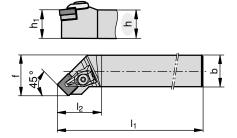


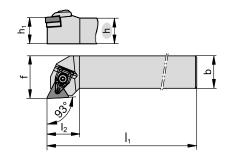
Image shows right-hand version

h [mm]	Type, Designation		h ₁ [mm]	b [mm]	l, [mm]	ا [mm]	f [mm]	Ο	S.
20	DSSNR 2020 K12	R	20	20	125	35	25	SN 1204	E01
20	DSSNL 2020 K12	L	20	20	125	35	25	SN 1204	E01
25	DSSNR 2525 M12	R	25	25	150	35	32	SN 1204	E01
25	DSSNL 2525 M12	L	25	25	150	35	32	SN 1204	E01

E01

11224545

11224494


11211561

11224503

DTJN..

Image shows right-hand version

h [mm]	Type, Designation		h ₁ [mm]	b [mm]	l, [mm]	ا [mm]	f [mm]	\bigcirc	
20	DTJNR 2020 K16	R	20	20	125	23	25	TN 1604	E01
20	DTJNL 2020 K16	L	20	20	125	23	25	TN 1604	E01
25	DTJNR 2525 M16	R	25	25	150	24	32	TN 1604	E01
25	DTJNL 2525 M16	L	25	25	150	24	32	TN 1604	E01

11227306

11227305

11344329

11227314

DVJN..

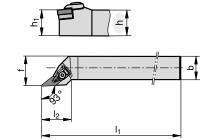
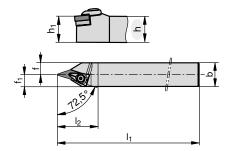


Image shows right-hand version

h [mm]	Type, Designation		h, [mm]	b [mm]	l, [mm]	اء [mm]	f [mm]		S.
20	DVJNR 2020 K16	R	20	20	125	39	25	VN 1604	E01
20	DVJNL 2020 K16	L	20	20	125	39	25	VN 1604	E01
25	DVJNR 2525 M16	R	25	25	150	39	32	VN 1604	E01
25	DVJNL 2525 M16	L	25	25	150	39	32	VN 1604	E01


11227305

11227311

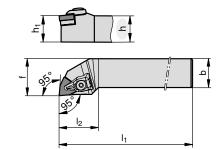
11227314

DVVN..

_	_									
h [mm]	Type, Designation		h ₁ [mm]	b [mm]	l ₁ [mm]	ا [mm]	f [mm]	f ₁ [mm]		T
20	DVVNN 2020 K16	Ν	20	20	125	43	7.5	12.5	VN 1604	E01
25	DVVNN 2525 M16	Ν	25	25	150	43	12.5	12.5	VN 1604	E01

E01

11258694


11227305

11227314

DWLN..

Image shows right-hand version

h [mm]	Type, Designation		h, [mm]	b [mm]	ا [mm]	ا _ء [mm]	f [mm]	\bigcirc	
20	DWLNR 2020 K06	R	20	20	125	27	25	WN 0604	E01
20	DWLNL 2020 K06	L	20	20	125	27	25	WN 0604	E01
20	DWLNR 2020 K08	R	20	20	125	34	25	WN 0804	E02
20	DWLNL 2020 K08	L	20	20	125	34	25	WN 0804	E02
25	DWLNR 2525 M06	R	25	25	150	27	32	WN 0604	E01
25	DWLNL 2525 M06	L	25	25	150	27	32	WN 0604	E01
25	DWLNR 2525 M08	R	25	25	150	34	32	WN 0804	E02
25	DWLNL 2525 M08	L	25	25	150	34	32	WN 0804	E02

Extremely precise, stable and fast: the CX24 ceramic grooving system helps to optimise series production

Ceramic grooving with CX24

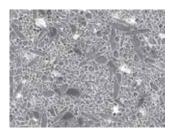
Grooving the thermal groove on the brake disc is an important machining step and calls for an extremely stable tool, so as to ensure a secure process with the necessary long service lives. In order to meet these challenges in long-term operation, we developed the CX24 ceramic grooving system for machining grey cast iron and other types of cast iron. Like the C-clamp holder, it is equipped with a wear-resistant carbide claw.

When combined with our high-performance ceramic cutting materials, this enables extremely precise grooving with no vibrations. The CX24 ceramic grooving system is suitable for standard tools with square-section shanks and modular tool systems with standardised interfaces such as HSK, UTS, Capto, etc. Its optimised design permits high feed rates with simplified handling, considerably shorter changing times and greatly reduced tool wear. By implementing grooving and profiling operations in one system, it is possible to minimise machining outlay and unit costs, with savings of up to 85% being attainable. The CERATIZIT CX24 ceramic grooving system therefore makes a decisive contribution towards increasing productivity in series manufacturing of brake discs.

Grades overview

Grade designatio	Standard d on ISO	esignation ANSI	Cutting material type	01	05			nge 35	45	50	Ρ	М	К	Ν	S	н
CTN3105	CN-K05	C4	Ν										•			
CTI3105	CN-K05	C3	I										•			
0113105	CN-S05	-	I												0	

• Main application • Extended application


• 0

Grade description

CTN3105

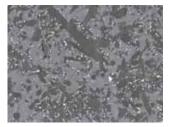
Ceramic

CN-K05

Specifications: Composition: $\beta - Si_{3}N_{4}$ | Grain size: fine | Hardness: HV₁₀ 1620

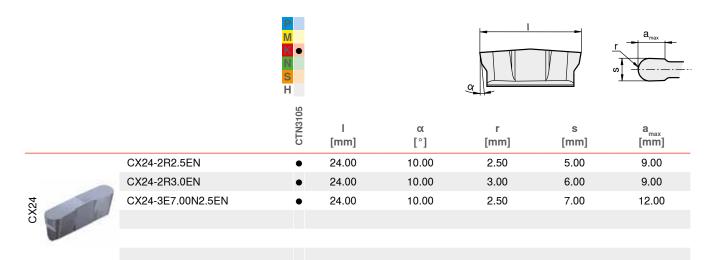
Recommended use:

Universal silicon nitride grade for cast iron machining.


Composition: α , β – Sialon | Hardness: HV₁₀ 1900

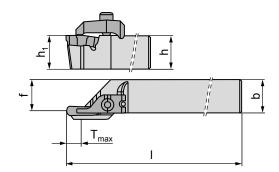
CTI3105

Ceramic


CN-K05 | CN-S05

Specifications:

Recommended use: The hardest sialon on the market – high-performance grade for machining of cast iron and Ni-based alloys.


CX24..

• Main application • Extended application

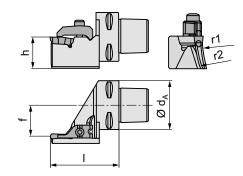
CX24 shank holder - radial

h [mm]	Type, Designation		h₁ [mm]	b [mm]	l [mm]	T _{max} * [mm]	f [mm]		S.
25	E25L0012-2525M-CX24-2	L	25	25	150	12	23	CX24-2	E01
25	E25R0012-2525M-CX24-2	R	25	25	150	12	23	CX24-2	E02
25	E25L0012-2525M-CX24-3	L	25	25	150	12	23	CX24-3	E01
25	E25R0012-2525M-CX24-3	R	25	25	150	12	23	CX24-3	E02

 ${}^{*}T_{max}$ dependent on width of indexable insert

CX24 shank holder - axial

	71 72	-
	٩ ٩	
T _{max}		
₄		


h [mm]	Type, Designation		h₁ [mm]	b [mm]	l [mm]	T _{max} * [mm]	f [mm]		S.
25	E25L0012-2525M-CX24-2 A130-180	L	25	25	150	12	23	CX24-2	E01
25	E25R0012-2525M-CX24-2 A130-180	R	25	25	150	12	23	CX24-2	E02
25	E25L0012-2525M-CX24-3 A140-200	L	25	25	150	12	23	CX24-3	E01
25	E25R0012-2525M-CX24-3 A140-200	R	25	25	150	12	23	CX24-3	E02

 ${}^{*}T_{max}$ dependent on width of indexable insert

PSC50-CX24.. Axial holder

		LNR						
h [mm]	Type, Designation		d _a [mm]	l [mm]	T _{max} * [mm]	f [mm]		S.
32	PSC50-L0014-32070-CX24-2 A130-190	L	50	70	14	32	CX24-2	E01
32	PSC50-R0014-32070-CX24-2 A130-190	R	50	70	14	32	CX24-2	E02
32	PSC50-L0015-32070-CX24-3 A140-240	L	50	70	15	32	CX24-3	E01
32	PSC50-R0015-32070-CX24-3 A140-240	R	50	70	15	32	CX24-3	E02

 $^{\ast}T_{_{max}}$ dependent on width of indexable insert

First-class cutting materials combined with improved tools make series production of brake discs even more productive!

www.ceratizit.com

Technical references

Due to the continuous further development of cutting materials and the optimisation of turning and grooving tools, we are able to offer our customers in the field of brake disc manufacturing innovative solutions for all applications and machine outputs. Well-established and new high-performance grades for machining grey cast iron and other cast iron materials, indexable inserts and tools enable significantly greater service lives, feed rates and cutting speeds.

Our newly-developed cutting and grooving inserts made from full CBN, whisker ceramic and composite ceramic, combined with wear-resistant carbide claws for turning (C-clamp 2.0) and grooving (CX24) systems are being used successfully in brake disc machining. With the improved chip breakers and insert geometries, they aid in creating significantly more process security in series production. These CERATIZIT innovations help to increase service lives and reduce machining times, as higher feed rates and cutting speeds are possible – as shown convincingly by the success stories.

BRAKE DISC MACHINING

PROBLEM/CRITERIA

▲ Increase cutting speed and feed rate

▲ Avoid indexable insert breakage on the outer diameter!

SITUATION

Application	Turning
Workpiece	Brake disc
Material	GG25
Properties/Hardness	HB 230–280
Machine	Hessap T.L.
COMPETITION	
ΤοοΙ	Special holder (S3 system)
Indexable insert	-
Grade	-
CERATIZIT	
ΤοοΙ	Special R holder
Indexable insert	RNGX120400TN-020D-C
Grade	CTBK103, full-PCBN insert

RESULT

	Competition	CERATIZIT
V _c [m/min]	1000	1400
a _p [mm]	3-4	3-4
f [mm]	0.7	0.8
Cooling	none	none
Tool life [piece]	1000	1000

RESULT / CUSTOMER BENEFIT

CUTTING SPEED

40% higher cutting speed
 15% higher feed rate
 Improved wear properties
 Process security
 CERATIZIT
 CERATIZIT
 Chip thickness: maximum 0.74 mm, average 0.40 mm

BRAKE DISC MACHINING

SITUATION

Application	Turning
Workpiece	Brake disc Ø 300 mm
Material	GG25
Properties/Hardness	_
Machine	Scherer Feinbau

PROBLEM/CRITERIA

▲ Increase service life and improve surface quality

CERATIZIT	
ΤοοΙ	Special finishing holder (hydraulic)
Indexable insert	SNGX120416TN-020D-C
Grade	CTBK103

RESULT

	Competition	CERATIZIT
V _c [m/min]	800	1050
a _p [mm]	0.3	0.3
f [mm]	0.5	0.5
Cooling	none	none
Tool life [piece]	450	600

RESULT / CUSTOMER BENEFIT

TOOL LIFE

▲ Tool changes reduced by 25%
 ▲ Better surface quality – including visually
 ▲ Cutting speed more than 30% higher
 ▲ Service life more than 30% longer
 CERATIZIT

BRAKE DISC MACHINING

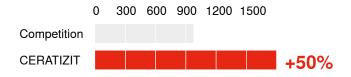
SITUATION

Application	Grooving
Workpiece	Brake disc (Ø 340mm)
Material	GG25
Properties/Hardness	-
Machine	Hessap T.L.

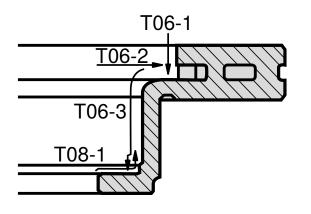
PROBLEM/CRITERIA

Reduce unit costs

CERATIZITToolSpecial CX24 holderIndexable insertCX24-3 R5-Special profileGradeCTN3105


RESULT

	Competition	CERATIZIT
V _c [m/min]	1000	1500
a _p [mm]		
f [mm]	0.5	0.55
Cooling	none	none
Tool life [piece]	700	700
Insert price [%]	100	15


RESULT / CUSTOMER BENEFIT

- ▲ Carbide claw > process security
- ▲ Feed rate: +10%, cutting speed: +50%
- ▲ Ceramics replaced by full-CBN. Unit costs reduced by 85%!

CUTTING SPEED

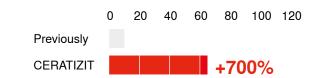
PRE-FINISHING OF A FRONT DISC

PROBLEM/CRITERIA

▲ Process-secure machining, increased tool life

Application	Finishing
Workpiece	Brake disc Ø 431mm
Material	alloyed grey steel (TL-011)
Properties/Hardness	-
Machine	Mazak VC500
COMPETITION	
ΤοοΙ	Standard shank holder
Indexable insert	
Grade	GC3015
CERATIZIT	
ТооІ	DWLNR 2525 M08-C207
Indexable insert	WNGX080416TN-020D-C
Grade	CTN3105

RESULT


	Competition	CERATIZIT
V _c [m/min]	450	600
a _p [mm]	1.1	1.1
f [mm]	0.40	0.40
Cooling	none	none
Tool life [piece]	8-10	62

RESULT / CUSTOMER BENEFIT

TOOL LIFE

SITUATION

- Process security established no more fluctuations in the tool life
- ▲ CERAMIC works without crater formation (against HM-C)
- ▲ Tool life increased almost sevenfold = 700%

FINISHING OF A REAR WHEEL DISC

PROBLEM/CRITERIA

▲ Increase feed rate, better surface quality

SITUATION

Application	Finishing
Workpiece	Brake disc Ø 340mm
Material	Proprietary GG-25
Properties/Hardness	-
Machine	HONOR vertical centre
COMPETITION	
Tool	-
Indexable insert	CNMG 120408EN-MA
Grade	UC5115
CERATIZIT	
Tool	WB-ISO shank tool
Indexable insert	CNMA 120412EN
Grade	CTCK110

RESULT

	Competition	CERATIZIT
V _c [m/min]	300	300
a _p [mm]	0.40-0.50	0.40-0.50
f [mm]	0.20	0.32
Cooling	none	none
Tool life [piece]	90-110	330

RESULT / CUSTOMER BENEFIT

TOOL LIFE

- ▲ Feed rate increased by 60%, lower R_a value attained
- ▲ Significantly-improved surface quality due to Masterfinish effect (R0.8 to R1.2)
- Tool life fluctuation caused by changing material conditions reduced, process security increased

SITUATION

Machining of cast iron

BELT PULLEY

PROBLEM/CRITERIA

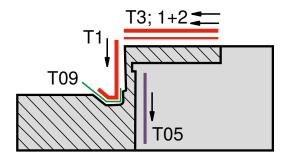
▲ Longer tool life, cost saving

A	T
Application	Turning
Workpiece	Belt pulley / grooved wheel
Material	G3000 iron
Properties/Hardness	20–25 HRC
Machine	Herkules
COMPETITION	
ΤοοΙ	-
Indexable insert	CNMG12048EN-MF
Grade	-
CERATIZIT	
Tool	Special tool
Indexable insert	CNMA 120408EN
Grade	CTCK110

RESULT

	Competition	CERATIZIT
V _c [m/min]	800	800
a _p [mm]	Roughness 0.40 + fine 0.10	0.50 in one pass
f [mm]	0.3	0.3
Cooling	none	none
Tool life [piece]	500	900

RESULT / CUSTOMER BENEFIT


TOOL LIFE

- ▲ Material is too soft for whisker, carbide is by far the better choice
- ▲ Process time improved by approx. 50% cycle time, 1.07 seconds instead of 2.10 seconds
- ▲ High cost saving for this fully-automatic line

Machining of high-alloy cast iron

PRODUCTION OF A REAR WHEEL DISC

▲ Process security and improved tool service life

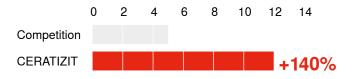
▲ T1: TNMG 220416EN-M70 T3.2: WNMA 080412EN ▲ T5: WNMG 080416EN-M70 T09: VNMG 160412EN-

SITUATION

Application	Turning
Workpiece	Brake disc Ø 430 mm
Material	High-alloy cast iron
Properties/Hardness	-
Machine	Doosan vertical centre
COMPETITION	
ΤοοΙ	-
Indexable insert	-
Grade	MC5115
CERATIZIT	
ΤοοΙ	Special tool
Indexable insert	TNMG 220416EN-M70 and others
Grade	CTCK110 & CTCK120

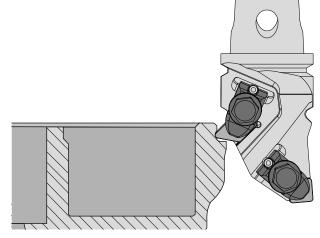
M50 CTCK120 different ap values for each operation -T1+T5+T3.1= 1 mm T3.2= 0.20 mm and T09= 2.20 mm

PROBLEM/CRITERIA


RESULT

	Competition	CERATIZIT
V _c [m/min]	450	450
a _p [mm]	0.20 in T3 / 1.00 in	n T1+T5 / 2.20 in T09
f [mm]	0.30	0.30
Cooling	none	none
Tool life [piece]	4-5	10-12

RESULT / CUSTOMER BENEFIT


TOOL LIFE

- Process security established
- ▲ Up to three times the tool life (depending on operation)
- ▲ Significantly lower cutting forces and power requirement, less component deformation

Machining of cast iron

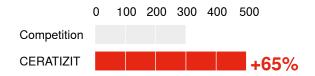
BRAKE DISC MACHINING

Application	Turning		
Workpiece	Brake disc		
Material	EN-GJL-250 (proprietary cast iron)		
Properties/Hardness	HB 170-217		
Machine	Morando Multispindle		

PROBLEM/CRITERIA

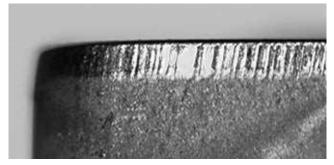
▲ Extend tool life, reduce CPP (cost per part) and increase tool service life

CERATIZIT	
ТооІ	Special tool
Indexable insert	CNMG 120412
Grade	CTCK120


RESULT

	Competition	CERATIZIT
V _c [m/min]	250	250
a _p [mm]	1.0	1.0
f [mm]	2.0	2.0
Cooling	Emulsion	Emulsion
Piece / Cutting edge	300	500

RESULT / CUSTOMER BENEFIT


- ▲ Better surface quality also improves the semi-finish result
- ▲ Regular/consistent insert change interval on all 3 OPs
- ▲ From OP1= 300, OP2= 200 and OP3= 300 to a constant 500 pieces
- ▲ Tool life increased by approx. 70% per cutting edge

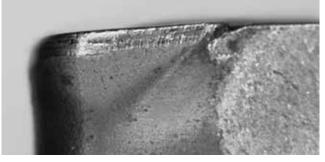
NUMBER OF PIECES

Types of wear - turning

Flank wear

Abrasion on flank, normal wear after a certain machining time.

Edge breakages


Through excessive mechanical stress at the cutting edge fracture and chipping can occur.

Crater wear

The hot chip which is being evacuated causes cratering at the rake face of the cutting edge.

Plastic deformation

High machining temperature and simultaneous mechanical stress can lead to plastic deformation.

Cause

- Cutting speed too high
- ▲ Grade does not have enough wear resistance
- Feed not adapted to application

Solution

- Select a cutting material grade with a higher wear resistance
- Bring feed rate into the right relationship with cutting speed and cutting depth (increase feed rate)

Cause

- ▲ Grades with too high a wear resistance
- Vibration
- Feed rate or cutting depth is too high
- Interrupted cut
- Chip stroke

Solution

- ▲ Use tougher grades
- ▲ Use negative cutting edge geometry with a chip breaker
- ▲ Improve stability (tool, workpiece)

Cause

- ▲ Cutting speed, feed rate or both are too high
- ▲ Rake angle too low
- ▲ Grade does not have enough wear resistance
- Incorrectly supplied coolant

Solution

- ▲ Reduce cutting speed and/or feed rate
- ▲ Increase amount and/or pressure of coolant, check supply
- ▲ Use a more crater-resistant grade

Cause

- Working temperature too high, softening of the base material (also found with carbide)
- Damage to the coating
- Chip breaker too narrow

Solution

- ▲ Reduce cutting speed
- Select a cutting material grade with a higher wear resistance
- Make provisions for cooling

Built-up edge formation

Built-up edge occurs when the chip is not evacuated properly due to insufficient cutting temperature.

Insert breakage

Excessive stress of the insert causes breakage.

Cause

- ▲ Cutting speed too low
- ▲ Rake angle too small
- Incorrect cutting material
- ▲ Missing coolant/lubrication

Solution

- ▲ Increase cutting speed
- Increase rake angle
- ▲ Use TiN coating (smooth surface)
- ▲ Use thicker emulsion

Cause

- ▲ Overload of the cutting material
- ▲ Lack of stability
- ▲ Wedge angle too small
- ▲ Excessive notch wear

Solution

- ▲ Use a tougher cutting material
- ▲ Use chamfer for edge protection
- ▲ Increase rounding of cutting edge
- ▲ Use more stable geometry

Troubleshooting guide for turning

Problem

Type of wear					orkpie roblem					
Flank wear	Crater wear	Notch wear	Cracks at right angles to the cutting edge	Edge breakage	Insert breakage	Chipping on the surface	Surface quality	Vibration	Burr formation	Solution, measures
	Ţ		Ţ			Û	Ŷ	Û		Cutting speed v_{c}
Ŷ	Ŷ	Ţ	Ţ	Û		Ŷ	Ţ	~	仓	Feed f
Ŷ			Ţ	Û					仓	Depth of cut a _p
	Ţ		Û		Ŷ	Ţ	Û		Û	Check chamfer angle and setting angle
		Ŷ		Ŷ	Ŷ		Ŷ	Ţ	Û	Corner radius
Û	Û		Û	Û	Ŷ	Û	Û	Û	Û	Rounding
	Ļ	Î	Î	Î	Î					BH Wear resistance Physical properties Image: Comparison of the second
				≈	*	*	~	≈		Tool clamping
				≈	≈	≈	~	~		Workpiece clamping
				*	*	Û	Û	Ţ		Overhang
*				*	æ	*	*	æ		Pitch height
ប្នំ បិ	raise, large raise, small	influer	nce ase,				Û	influen	ice reduce	e, large ≈ check, optimise e, small

Special troubleshooting for brake discs

Troubleshooting

Problem	Possible causes	Solution
Poor tool lives	 Cutting speed does not fall within the specifications (may be too high or too low) 	 Increase cutting speed Ideally, chip is glowing ("sparkler")
Poor surface quality	 ▲ Feed rate too high ▲ Corner radius too small 	 Reduce feed rate Increase corner radius Use MASTERFINISH
Chatter marks	▲ Tool overhang too long	▲ Reduce, use more stable holder
Vibration	 Cutting pressure too high Chip thickness too high Centre height incorrect Unstable tool or workpiece clamping Indexable insert radius too large, high recoil force 	 Reduce cutting pressure Reduce chip thickness Check / adjust centre height Clamp with C-clamp Use smaller radius
Burrs on workpiece	 ▲ With soft materials ▲ Cutting pressure too high 	 Use smaller radius Adjust chip thickness Increase cutting depth Increase cutting speed Reduce chamfer angle
Notch wear	 Cutting speed/feed rate too high Temperature at the cutting edge too high 	Check cutting speed and feed rate with regard to cutting length/period of operation and adjust
Notch wear (chemical)	Deep scoring on the main cutting edge	 ▲ Check material ▲ For example, ferrite content too high (e.g. GG25)
Edge breakage on the work- piece	▲ Sharp edge at the exit	 Change machining direction Reduce the feed rate during entry and exit

Comparison table for materials

DIN	Work- piece No.	BS	AFNOR	SS	AISI	Japan JIS	Kc1.1 N/mm²	mc	VDI 3323 Group
10 SPb 20	1.0722		10 PbF 2		11 L 08		1350	0,20	1
100 Cr 6	1.2067	BL 3	Y 100 C 6		L 3	SUJ2	1775	0,24	6/9
105 WCr 6	1.2419		105 WC 13			SKS31	1775	0,24	6/9
12 CrMo 9 10	1.7380	1501-622 Gr. 31; 45	10 CD 9.10	2218	A 182-F22	SPVA, SCMV4	1675	0,24	6/7
12 Ni 19	1.5680		Z 18 N 5		2515		2450	0,23	10/11
13 CrMo 4 4	1.7335	1501-620 Gr. 27	15 CD 3.5	2216	A 182-F11; F12	SPVAF12	1675	0,24	6/7
14 MoV 6 3	1.7715	1503-660-440					1675	0,24	6/7
14 Ni 6	1.5622		16 N 6		A 350-LF 5		1675	0,24	6/7
14 NiCr 10	1.5732		14 NC 11		3415	SNC415(H)	1675	0,24	6/7
14 NiCr 14	1.5752	655 M 13	12 NC 15		3310; 9314	SNC815(H)	1675	0,24	6/7
14 NiCrMo 13 4	1.6657						1675	0,24	6/7
15 Cr 3	1.7015	523 M 15	12 C 3		5015		1675	0,24	6/7
15 CrMo 5	1.7262		12 CD 4			SCM415(H)	1675	0,24	6/7
15 Mo 3	1.5415	1501-240	15 D 3	2912	A 204 Gr. A		1675	0,24	6/7
16 MnCr 5	1.7131	527 M 17	16 MC 5	2511	5115	SCR415	1675	0,24	6/7
16 Mo 5	1.5423	1503-245-420			4520	SB450M	1675	0,24	6/7
17 CrNiMo 6	1.6587	820 A 16	18 NCD 6				1675	0,24	6/7
21 NiCrMo 2	1.6523	805 M 20	20 NCD 2	2506	8620	SNCM220(H)	1725	0,24	6/8
25 CrMo 4	1.7218	1717 CDS 110	25 CD 4 S	2225	4130	SM420; SCM430		0,24	6/8
28 Mn 6	1.1170	150 M 28	20 M 5	LLLU	1330	011120,0011100	1500	0,22	2
32 CrMo 12	1.7361	722 M 24	30 CD 12	2240	1000		1775	0,24	6/9
34 Cr 4	1.7033	530 A 32	32 C 4	LLHU	5132	SCR430(H)	1725	0,24	6/8
34 CrMo 4	1.7220	708 A 37	35 CD 4	2234	4135; 4137	SCM432;SCCRM3		0,24	6/9
34 CrNiMo 6	1.6582	817 M 40	35 NCD 6	2541	4340	SNCM447	1775	0,24	6/9
35 S 20	1.0726	212 M 36	35 MF 4	1957	1140	3100101447	1525	0,24	2/3
36 CrNiMo 4	1.6511	816 M 40	40 NCD 3	1957	9840	SNCM447	1775	0,22	6/9
36 Mn 5	1.1167	01010140	40 NCD 3		9040	3110111447	1525		2/3
		C40 A 05			0105	CNC006		0,22	
36 NiCr 6	1.5710	640 A 35	35 NC 6		3135	SNC236	1800	0,24	3/9
38 MnSi 4	1.5120	897 M 39					1800	0,24	3/9
39 CrMoV 13 9	1.8523		05 14 5		4000		1775	0,24	6/9
40 Mn 4	1.1157	150 M 36	35 M 5		1039		1525	0,22	2/3
40 NiCrMo 2 2	1.6546	311-Type 7	40 NCD 2		8740	SNCM240	1775	0,24	6/9
41 Cr 4	1.7035	530 M 40	42 C 4		5140	SCR440(H)	1775	0,24	6/9
41 CrAlMo 7	1.8509	905 M 39	40 CAD 6.12	2940	A 355 Cl. A	SACM645	1775	0,24	6/9
41 CrMo 4	1.7223	708 M 40	42 CD 4 TS	2244	4142; 4148	SCM440	1775	0,24	6/9
42 Cr 4	1.7045	530 A 40	42 C 4 TS	2245	5140	SCr440	1775	0,24	6/9
42 CrMo 4	1.7225	708 M 40	42 CD 4	2244	4142; 4148	SCM440(H)	1775	0,24	6/9
45 WCrV 7	1.2542	BS 1		2710	S 1		1775	0,24	6/9
50 CrV 4	1.8159	735 A 50	50 CV 4	2230	6150	SUP10	1775	0,24	6/9
55 Cr 3	1.7176	527 A 60	55 C 3	2253	5155	SUP9(A)	1775	0,24	6/9
55 NiCrMoV 6	1.2713		55 NCDV 7		L 6	SKH1; SKT4	1775	0,24	6/9
55 Si 7	1.0904	250 A 53	55 S 7	2085; 2090	9255		1775	0,24	6/9
58 CrV 4	1.8161						1775	0,24	6/9
60 SiCr 7	1.0961		60 SC 7		9262		1775	0,24	6/9
9 SMn 28	1.0715	230 M 07	S 250	1912	1213	SUM22	1350	0,21	1
9 SMn 36	1.0736	240 M 07	S 300		1215		1350	0,21	1
9 SMnPb 28	1.0718		S 250 Pb	1914	12 L 13	SUM22L	1350	0,21	1
9 SMnPb 36	1.0737		S 300 Pb	1926	12 L 14		1350	0,21	1
AI99	3.0205						700	0,25	21

Comparison table for materials

DIN	Work- piece No.	BS	AFNOR	SS	AISI	Japan JIS	Kc1.1 N/mm²	mc	VDI 3323 Group
AlCuMg1	3.1325						700	0,25	22
AlMg1	3.3315						700	0,25	21
AlMgSi1	3.2315						700	0,25	22
C 105 W1	1.1545		Y1 105	1880	W 110	SK3	1675	0,24	3
C 125 W	1.1663		Y2 120		W 112	0.10	1675	0,24	3
C 15	1.0401	080 M 15	AF3 7 C 12; XC 18	1350	1015	S15C	1350	0,21	1
C 22	1.0402	050 A 20	AF 42 C 20	1450	1020	S20C, S22C	1350	0,21	1
C 35	1.0501	060 A 35	AF 55 C 35	1550	1035	S35C	1525	0,22	2/3
C 45	1.0503	080 M 46	AF 65 C 45	1650	1045	S45C	1525	0,22	2/3
C 55	1.0535	070 M 55		1655	1055	S55C	1675	0,24	3
C 60	1.0601	080 A 62	CC 55	1000	1060	S60C	1675	0,24	3
Cf 35	1.1183	000 / 102	0000		1000	S35C	1525	0,22	2/3
Cf 53	1.1213					S50C	1525	0,22	2/3
Ck 101	1.1274	060 A 96		1870	1095	0000	1675	0,24	3
Ck 15	1.1141	080 M 15	XC 15; XC 18	1370	1015	S15C	1350	0,21	1
Ck 55	1.1203	070 M 55	XC 55	1070	1015	S150	1675	0,24	3
Ck 60	1.1221	080 A 62	XC 60	1665; 1678		S58C	1675	0,24 0,24	3
CoCr20W15Ni	2.4764	000 A 02	X0 00	1005, 1070	1000	0000	3300	0,24	35
CuZn15	2.0240						700	0,24 0,27	27
CuZn36Pb3	2.0240						700	0,27	26
E-Cu57	2.0060						700	0,27	28
G-AlSi10Mg	3.2381						700	0,25	24
G-AlSi12	3.2581						700	0,25	24
G-AlSi9Cu3	3.2163						700	0,25	23
G-CuSn5ZnPb	2.1096						700	0,23	26
G-CuZn40Fe	2.0590						700	0,27	28
G-X 120 Mn 12	1.3401	Z 120 M 12	Z 120 M 12		A 109 (A)		3300		20 35
G-X 20 Cr 14	1.4027	420 C 29	Z 20 C 13 M		A 128 (A)	SCS2	1875	0,24 0,21	12/13
G-X 40 NiCrSi 38 18	1.4865	420 C 29 330 C 40	2 20 0 13 10			3032	2600	0,21	31
G-X 45 CrSi 9 3	1.4718	401 S 45	Z 45 CS 9		HNV 3		2450		10/11
G-X 45 CrSi 9 3 G-X 5 CrNi 13 4	1.4313	401 3 45 425 C 11	Z 5 CN 13.4	2385	CA 6-NM		1875	0,23	12/13
G-X 5 CrNiMoNb 18 10		425 C 11 318 C 17	Z 4 CNDNb 18.12 M	2365	CA 6-INIVI		2150	0,21 0,20	14
G-X 6 CrNi 18 9	1.4308	304 C 15	Z 6 CN 18.10 M	2333	CF-8		2150		14
G-X 6 CrNiMo 18 10	1.4408	304 C 15	2 0 CN 10.10 M	2333	CF-0		2150	0,20	
G-X 7 Cr 13	1.4408						1875	0,20	14 12/13
GG-10	0.6010		Ft 10 D	01 10 00	A48-20 B	FC100	1150	0,21 0,21	
GG-15	0.6010	Grade 150	Ft 15 D		A40-20 B A48-25 B	FC100 FC150	1150	0,21 0,21	15 15
					A48-25 B				
GG-20 GG-25	0.6020 0.6025	Grade 220 Grade 260	Ft 20 D Ft 25 D		A48-30 B A48-40 B	FC200 FC250	1150 1250	0,21	15 15/16
	0.6025	Grade 260 Grade 300			A48-40 B A48-45 B			0,24 0,28	16
GG-30 GG-35	0.6030	Grade 300 Grade 350	Ft 30 D Ft 35 D		A48-45 B A48-50 B	FC300 FC350	1350 1350		16
GG-35 GG-40	0.6035	Grade 350 Grade 400	Ft 40 D		A48-50 B A48-60 B	FC350 FC400		0,28	
GG-40 GGG-35.3	0.8040	GIAGE 400	1 (40 D	0140-00	A40-00 D	FC400 FCD350	1350 1225	0,28	16 17
		SNG 420/10	EGS 400 12	0717.00	60 40 19			0,25	17
GGG-40	0.7040	SNG 420/12	FGS 400-12	0717-02	60-40-18	FCD400	1225	0,25	17
GGG-40.3	0.7043	SNG 370/17	FGS 370-17	0717-15	GE 4E 10	FCD400	1225	0,25	17
GGG-50	0.7050	SNG 500/7	FGS 500-7	0727-02	65-45-12	FCD500	1350	0,28	18
GGG-60	0.7060	SNG 600/3	FGS 600-3	0732-03	80-55-06	FCD600	1350	0,28	18
GGG-70	0.7070	SNG 700/2	FGS 700-2	0737-01	100-70-03	FCD700	1350	0,28	18
GGG-NiCr 20 2	0.7660	S-NiCr 20 2	S-NC 20 2		A 439 Type D-2		1350	0,28	18

Comparison table for materials

DIN	Work- piece No.	BS	AFNOR	SS	AISI	Japan JIS	Kc1.1 N/mm²	mc	VDI 3323 Group
GGG-NiMn 13 7	0.7652	S-NiMn 13 7	S-NM 13 7				1350	0,28	18
GS-Ck 45	1.1191	080 M 46	XC 42	1672	1045	S45C	1525	0,22	2/3
GTS-35-10	0.8135	B 340/12	MN 35-10				1225	0,25	19
GTS-45-06	0.8145	P 440/7					1420	0,30	20
GTS-55-04	0.8155	P 510/4	MP 50-5				1420	0,30	20
GTS-65-02	0.8165	P 570/3	MP 60-3				1420	0,30	20
GTS-70-02	0.8170	P 690/2	IP 70-2				1420	0,30	20
NiCr20TiAl	2.4631	HR 401; 601	Nimonic 80 A				3300	0,24	33
NiCr22Mo9Nb	2.4856		Inconel 625				3300	0,24	33
NiCu30Al	2.4375		Monel K 500				3300	0,24	34
NiFe25Cr20NbTi	2.4955						3300	0,24	34
S 18-0-1	1.3355	BT 1	Z 80 WCV 18-04-01		Τ1		2450	0,23	10/11
S 18-1-2-5	1.3255	BT 4	Z 80 WKCV 18-05-04-0		T 4		2450	0,23	10/11
S 2-9-2	1.3348	511	Z 100 DCWV 09-04-02-	2782	M 7		2450	0,23	10/11
S 6-5-2	1.3343	BM 2	Z 85 WDCV 06-05-04-0		M 2	SKH9; SKH51	2450	0,23	10/11
S 6-5-2-5	1.3243	DIVIZ	Z 85 WDKCV 06-05-05-			SKH55	2450	0,23	10/11
TiAl6V4	3.7165	TA 10 bis TA 13		2720		011100	2110	0,20	37
X 10 Cr 13	1.4006	410 S 21	Z 12 C 13	2302	410; CA-15	SUS410	1875	0,22	12/13
X 10 CrNiMoNb 18 12		410 3 21	212013	2302	318	303410	2150	0,21	14
X 10 CrNiS 18 9	1.4305	303 S 21	Z 10 CNF 18.09	0046	303				14
				2346			2150	0,20	
X 100 CrMoV 5 1	1.2363	BA 2	Z 100 CDV 5	2260	A 2		2450	0,23	10/11
X 12 CrMoS 17	1.4104	001 0 01	Z 10 CF 17	2383	430 F	SUS430F	1875	0,21	12/13
X 12 CrNi 17 7	1.4310	301 S 21	Z 12 CN 17.07		301	0110004	2150	0,20	14
X 12 CrNi 22 12	1.4829					SUS301	1350	0,28	16
X 12 CrNi 25 21	1.4845	310 S24	Z 12 CN 25.20	2361	310 S	SUH310; SUS310S		0,20	14
X 12 CrNiTi 18 9	1.4878	321 S 20	Z 6 CNT 18.12 (B)	2337	321	01111000	2150	0,20	14
X 12 NiCrSi 36 16	1.4864	NA 17	Z 12 NCS 37.18		330	SUH330	2600	0,24	31
X 15 CrNiSi 20 12	1.4828	309 S 24	Z 15 CNS 20.12		309	SUH309	1350	0,28	16
X 165 CrMoV 12	1.2601			2310			2450	0,23	10/11
X 2 CrNiMo 18 13	1.4440						2150	0,20	14
X 2 CrNiMoN 17 13 3	1.4429	316 S 62	Z 2 CND 17.13 Az	2375	316 LN	SUS316LN	2150	0,20	14
X 2 CrNiN 18 10	1.4311	304 S 62	Z 2 CN 18 .10	2371	304 LN	SUS304LN	2150	0,20	14
X 20 CrNi 17 2	1.4057	431 S 29	Z 15 CN 16.02	2321	431	SUS431	1875	0,21	12/13
X 210 Cr 12	1.2080	BD 3	Z 200 C 12		D 3		2450	0,23	10/11
X 210 CrW 12	1.2436			2312			2450	0,23	10/11
X 30 WCrV 9 3	1.2581	BH 21	Z 30 WCV 9		H 21	SKD5	2450	0,23	10/11
X 40 CrMoV 5 1	1.2344	BH 13	Z 40 CDV 5	2242	H 13	SKD61	2450	0,23	10/11
X 46 Cr 13	1.4034	420 S 45	Z 40 C 14				1875	0,21	12/13
X 5 CrNi 18 9	1.4301	304 S 15	Z 6 CN 18.09	2332; 2333	304; 304 H	SUS304	2150	0,20	14
X 5 CrNiMo 17 13 3	1.4436	316 S 16	Z 6 CND 17.12	2343	316	SUS316	2150	0,20	14
X 5 CrNiMo 18 10	1.4401	316 S 16	Z 6 CND 17.11	2347	316	SUS316	2150	0,20	14
X 53 CrMnNiN 21 9	1.4871	349 S 54	Z 52 CMN 21.09		EV 8		1875	0,21	12/13
X 6 Cr 13	1.4000	403 S 17	Z 6 C 13	2301	403	SUS403	1875	0,21	12/13
X 6 Cr 17	1.4016	430 S 15	Z 8 C 17	2320	430	SUS430	1875	0,21	12/13
X 6 CrMo 17	1.4113	434 S 17	Z 8 CD 17.01	2325	434	SUS434	1875	0,21	12/13
X 6 CrNiMoTi 17 12 2	1.4571	320 S 31	Z 6 CNT 17.12	2350	316 Ti		2150	0,20	14
X 6 CrNiNb 18 10	1.4550	347 S 17	Z 6 CNNb 18.10	2338	347		2150	0,20	14
X 6 CrNiTi 18 10	1.4541	321 S 12	Z 6 CNT 18.10	2337	321		2150	0,20	14
X2 CrNi 18-8	1.4317						2150	0,20	14

We will support you in production with individual, tailor-made solutions and machine commissioning on site

OEM services

Not only do we offer our partners in mass production highly-stable, excellent cutting material and tool solutions for the entire automotive sector, we also provide tailor-made complete concepts and toolkits for optimal machining of their workpieces. In doing so, we guarantee the utmost professionalism and reliability, with concepts specially tailored to your requirements.

Working together with you, we will develop complete machining strategies, from defining the individual work steps through to their implementation. We will support you during commissioning, with tool assembly and in the preliminary and final acceptance processes for the machines. Tooling Academies can be found at our production sites and give you the opportunity to try out new materials and perform machining tests. Place your trust in our decades of experience and benefit from our extensive practical know-how throughout the entire field of heavy machining.

OEM services

OEM

Everything from a single source: tailor-made machining strategies and complete tool packages

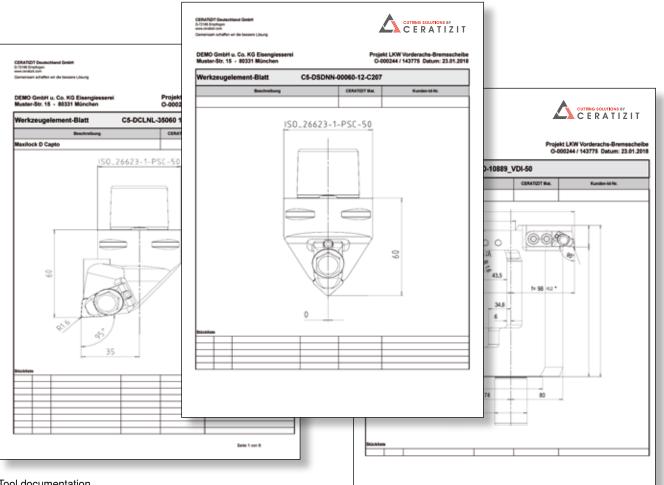
Not only do we offer our partners in an extremely wide range of industrial applications excellent cutting tools, but also tailor-made complete concepts and toolkits for optimal machining of workpieces on your equipment. Our own OEM team is available to coordinate and support your project. For new materials or particularly difficult workpieces, Tooling Academies at our production sites and several Technical Centres at our sales offices are ready to carry out machining tests. In this way, we are able to guarantee you the utmost professionalism and reliability, as well as solutions individually tailored to your requirements. Working together with you, we develop detailed machining concepts and support you with implementing these directly on the machinery at your site – worldwide. We support you in process optimisation as well as in realising new projects. Get in touch.

With the CERATIZIT OEM services, we offer you the following specific options:

- Advice on workpiece clamping and the machining strategy
- Definition of the individual machining steps
- ▲ Selection of the optimal tools, cutting geometries and cutting materials
- ▲ Where required, trial machining in one of the CERATIZIT Tooling Academies or one of the Technical Centres
- Determination of cutting forces and spindle power mathematically or by means of cutting force measurement
- Establishment of cutting parameters
- Calculation of machining times and unit costs

- Forecast for tool service lives and tool costs
- Tool assembly and measurement
- Support with preliminary and final acceptance of machines
- ▲ Comprehensive project documentation
- ▲ Effective project and deadline management

Behind every OEM project is an experienced, multifunctional team of experts from all necessary specialist areas: project management, sales, customer service, application technology, construction, logistics and production. As a result, we are able to guarantee you a professional service for the provision of original equipment machinery and process optimisations, as well as a reliable collaboration based on partnership.


Complete and clearly-structured project documentation

The project documentation sets out the entire machining concept in full, in a clearly-structured manner: machining steps and tool assignment, machining plans, cutting

parameters, power and time calculations, tool sheets with reference dimensions, parts lists and, of course, the tool package with prices and delivery times.

CERATIZIT Deutschland GmbH D-1216 Engligen www.centatic.com Geneinsam schaffen wir die beseens Lösung			ERATIZ	:IT	-				
DEMO GmbH u. Co. KG Eisengiesserei	Pro 666	ATTITIT LOS	prechpartner						
•		iel Huter - F							
Muster-Str. 15 30331 München	Tel: +43	5672 200 2 /er@cerati	080		Mac	hining st	udy		
itax Mustermann let =48 0916 200 33 nax.mustermann@demo-muc.de	Patric Tek + patric		19980.20						
	Marks Tel: +	D-731ME Emp www.coratet-	Deutschland GmbH Ingen on schaffen wir die besame ("D						
	m.tor	DEMO	GmbH u. Co. KG	Eisengiess	erei				KW Vorderachs-Bremsscheibe
			it: 15 - 80331 Mu uge (zusammen		Werksti	ick 1	DVT 500SB	O-0002	244 / 143775 Datum: 23.01.2018
			Zunammengebeutes Wer Besuchreibung			CORRECTOR NO.	Weitgrog-Donatts		Eingesetül bei (Bindestatick Aufsp. (#)
		P6-011	OP1008 - Station 1	Funder-60 Rr.	Bestellinumeer SNGX 12071679-0050-C-CTN018 C5-05049-00080-12-C207 SNGX 12071679-0008-C-CT0168	9/517130 9/51ec22 9/517134	Kundensidek Bisk Karamik Ordiversidek PSC80 Destination Seke Destination	efen 1 1, p 1 2, p(ense) 1 1,	A A No 0 0 1 [21-45-41] A 6 No
		P6-010	0P1068 - Blation 3		CNGR 1207 HTN 4080 C CTN0 HS CNGR 1207 HTN 4080 C CT11 105 CNGR 1207 HTN 4080 C CT11 105 CNGR 1207 HTN 4080 C CTN0 HS	95(71Q 95(71Q) 95(71Q)	55 Katamit Distwardept Sastan Dietwardepter PSC50 Distributer G-Clanz 55 Katamit Distwardept	PRIMA) 1 1.	
Projekt DEMO - LKW	Brem	PG-608	OP1088 - Butlen S	_	CHER 120111114 0280 C C1N0100 88-40-02 CA-DOLAL 20140112 C207 CNER 120110114000-C CTN0105	16(7)(2 18(8)(87 16(7)(2	Rpannalement (L-Clamp 2 / Kassette zu 1003 / 20H Brit Karsunik Distwendeps	6 (1) 10 (1)	0 0 4 0 2 3 8 4 10
D-000244 143775 0035 81 48		PG-867 TH-081	OF1088 - Bullen 7 OF2088 - Bullen 1	-	CR-OCLINL-1998E-13-C207 CMEA 120110714-038D-C CTI3105 BNGA 120110714-039D-C CTI3105	9:017120 9:017130	PSC80 Certifiater C-Clemy Balan Cretive Heydelle (re Site Karama Deriverdepie	p2.0 0 (Mintal) 1 1. Mar 1 1.	0 0 1 014040 1 4 10 5 8 8 10 014030
		76-082	CP2058 - Station 2	-	000HR 2101 H10-0007 8NGR 1207167N-0000-0 CTN0105	11017130	Dishtrater C-Cang 23 SN Karama Dishwendepe		8 8 10 mm
		78-683	07008 - Butien 3	-	00746, 2021 912 0207 8403 12011876-0080-0-0160108 06844 120119716-0080-0-01601	14862606 11517130 11862597	Derinater C-Clang 28 BN Ratema Detwardeps Derinater C-Clang 28		0 0 1 <i>A</i> A 10 0 1 (014048)
		78-064	OP2058 - Station 4		840.8 13014874-0080-0-010148 8049 880487740-0080-010148 8004 8804874-0180-0181498	0.047134	Salar Schickbrendsplate (v Salar Schickbrendsplate Blachkerank Schickbrend	2 0	7 4 10 0140340
		74-006	OP2058 - Station &		SMGA 130116714-0300-C CTN0105 06916, 2535 W10-C367	1517130	Drs Rarama Dertwendeps Dertrater C-Clang 2.0		# # 10 man
CERATURE Deutschland Gedet D. 2018 Replique was analytic an Generature enteller, wit die besame Liteung								ATIZIT	
DEMO GmbH u. Co. KG Eise Muster-Str. 15 - 88331 Mino	nglesserei :ben						Projekt LKW Vorderachs O-600244 / 143775 Dat	-Bremsscheibe hum: 23.01.2018	
Operation plan	Work	piece:	Frame	4	Set up: 2	Machine:			
· · ·			_		t, t		· <u>·</u>		
			•	<u>.</u>		41			
Company and the second		A-					1/////		
5///	///	11	10		(/////	\mathcal{A}	
ST/		1/-	0		(P	
		1/-					•	P	
5		7/-	0	V			•	P	
		7/-	0				•0	j D	
	///	7/4	0	R			•0		

Tool documentation

Power Calcul Nonspiece Operation	lation - Milling							
Operation	Housing	_						
Deal	Face milling	Name:	Alfred Holegger					
	AHFC.52.R.05-12							
naert	XOLX 1204105R-MI0 CTPP235							
		5	A A					
	Description of Material	ROWN						
	fenale Strength / Hardness	94		Mpa				
Workpiece material	Reference Material	40CrMe4V-182						
	Specific Cutting Force	Kile,	1747	Name2				
	Exponent of Ong Thickness		0,24					
14	Tod Daneler	Ð	82,00	interna international				
	Number of Seets		5	pen				
	Angle of Approach		10	•				
	Rate angle	¥.	Q.	*				
	Chameter of Button Inset	4		man				
	Cutting Material		Cemented Carticle					
	Park Rear	¥,	0	and a				
	Cuting Speed	VI.	200	minun				
	Depth of Cut		2					
	Paad par 3008		1,4	and the second s				
	mum of Cut		12,00	and the second				
Cutting Conditions	Omension U.	ų.	0.30	mn				
	ea + U, +	U)	12,00					
	Angle of Cutting Curve	· •.	190,0	-				
	math of Cul		11.52					
	Medium Chip Thickness	hits	6,155	_				
	Compensation Factor of Rake Angle	Kyp	0.79					
Compensation Factors	Corpensation Factor of vs	K2	0.96					
	Compensation Factor of Cutting Material	Faith	1,00					
	Corperation Factor of Wear	Kogr	1,00					
	Cuting Force per Tooth	Kone	3367	N				
	Number of teeth engaged	44	3	908				
weer Results	Total Cutting Force	Kom	10162	N				
	Cutting performance	Pi	35,87	NW .				
	Torque	м,	264	Auto .				
	liginde revs		1034	min'				
reductivity	Table field Metal removal rate	0,0000	8510	methin				

Calculation of cutting force and performance

Speak to us about new machines, new tools or process optimisation:

together we will create a better solution.

www.ceratizit.com

Industry solutions & technical manuals

Changed markets, new technologies and the development of complex materials mean that whole segments of industry are faced with major challenges - from the automotive industry and the energy sector to aviation and aerospace. As a creative and competent partner, we will work with you to develop sector-specific applications and individual solutions. Information on the individual segments, including detailed technical information, grade descriptions, cutting data, valuable application tips and correct usage data can be found in the Technical Manuals.

Download from www.ceratizit.com

CatalogueNo. 705 Industry Solutions

CatalogueNo. 702 Technical Manual - Heavy machining

CatalogueNo. 679 Technical Manual - Bar Peeling

CatalogueNo. 717 Technical Manual - Aluminium Wheel Machining

CatalogueNo. 668 Technical Manual - Wheelset

CatalogueNo. 667 Technical Manual - Hard Machining with PCBN

Notes

Notes

Headquarters:

CERATIZIT S.A. LU-8232 Mamer +352 31 20 85-1 info@ceratizit.com

www.ceratizit.com

Austria

CERATIZIT Austria GmbH AT-6600 Reutte **1**, +43 5672 200-0 E. info.austria@ceratizit.com

Brazil

CERATIZIT América Latina Ltda. BR-06453-002 Barueri, São Paulo +55 11 4133 2300 info.americalatina@ceratizit.com

Bulgaria CERATIZIT Bulgaria AG BG-5301 Gabrovo +359 66 812 206

info.bulgaria@ceratizit.com

China

CB-CERATIZIT Tianjin CN-300384 Tianjin T. +86 22 5810 7000

Czech Republic / Slovak Republic CERATIZIT Office Czech Republic CZ-594 01 Velké Meziříčí +420 566 520 341 info.czechrepublic@ceratizit.com

France / Luxembourg / Belgium

CERATIZIT Luxembourg S.à r.l. LU-8232 Mamer +352 31 20 85-1 E. info@ceratizit.com

Germany CERATIZIT Deutschland GmbH DE-72186 Empfingen T. +49 7485 99802 0 info.deutschland@ceratizit.com

United Kingdom / Ireland CERATIZIT Office UK UK-Sheffield S9 1XU Toll Free 0800 048 4877 +44 1925 261 161 E. info.uk@ceratizit.com

Hungary CERATIZIT Office Hungary HU-1138 Budapest . +36 1 <u>437 0930</u> info.hungary@ceratizit.com

India

CERATIZIT India Pvt. Ltd. IN-Bengaluru 560099 +91 80 4043 1262 E. ctindia.south@ceratizit.com

CERATIZIT India Pvt. Ltd. IN-Chennai 600037 . +91 44 4269 4350 ctindia.south@ceratizit.com

CERATIZIT India Pvt. Ltd. IN-Coimbatore 641009 +91 4224 273 373 ctindia.south@ceratizit.com

CERATIZIT India Pvt. Ltd. IN-Gurgaon 122002 +91 124 4018 481 ctindia.north@ceratizit.com

CERATIZIT India Pvt. Ltd. IN-Pune 411018 +91 20 6529 0628 E. ctindia.west@ceratizit.com

Indonesia **CB-CERATIZIT** Indonesia ID-17530 Bekasi T. +62-21-2961-2351

Italy CERATIZIT Italia S.p.A. IT-22040 Alserio (CO) +39 031 6349 211 info.italia@ceratizit.com

Mexico

CERATIZIT México, S.A. de C.V. MX-76040 Querétaro, QRO +52 442 225 9173 info.mexico@ceratizit.com

Netherlands CERATIZIT Nederland B.V. NL-4707 AT Roosendaal T. +31 165 55 08 00 info.nederland@ceratizit.com

Poland CERATIZIT Office Poland PL-30-443 Kraków +48 12 252 8591 info.polska@ceratizit.com

Spain / Portugal CERATIZIT Ibérica S.L. ES-28031 Madrid +34 91 351 0609 info.iberica@ceratizit.com

Taiwan **CB-CERATIZIT** Tamsui TW-25152-Tamsui T. +886 2 2622 1668

Turkey CERATIZIT Turkey TR-34870 Kartal, İstanbul +90 216 353 66 43 info.turkey@ceratizit.com

USA / Canada CERATIZIT USA, Inc. US-Warren, MI 48089-1833 Toll free +1-800-783-2280 +1-586-759-2280 E. info.usa@ceratizit.com

AA-PRO-0703-EN-02/18 003306