

CERATIZIT est un groupe d'ingénierie de pointe spécialisé dans les solutions d'outillage de coupe et de matériaux durs.

Tooling a Sustainable Future

Bienvenue!

Passez vos commandes facilement et rapidement

Le Service Clients

N° vert 0800 800 567

E-Mail info.france@ceratizit.com

Rien de plus facile

Commandes via notre boutique en ligne

https://cuttingtools.ceratizit.com

Conseil en fabrication et optimisation des processus sur site.

Vos conseillers techniques

M. America Control	
Votre n° client	

Tooling a Sustainable Future

CERATIZIT: Votre spécialiste pour des outils coupants et matériaux durs durables

Vous cherchez un partenaire sur lequel vous pouvez compter lorsqu'il s'agit d'outils coupants et de processus d'usinage ?

Chez CERATIZIT, nous ne sommes pas seulement un fabricant d'outils, nous sommes également à vos côtés pour vous conseiller grâce à notre connaissance et à notre expérience reconnue depuis plusieurs décennies.

Ceux qui se soucient de leur bilan carbone, trouveront également en nous un partenaire impliqué dans le développement durable, avec une stratégie et des objectifs concrets. En résumé, notre vocation : être le leader du développement durable dans notre secteur.

Depuis plus de 100 ans, CERATIZIT fait office de pionnier en proposant des solutions à base de matériaux durs destinées à l'usinage et à la protection contre l'usure. Nous assurons une qualité maximale à nos clients ainsi que l'accès aux derniers développements dans le secteur du carbure – une prestation complète pour les outils de coupe.

Préambule

Chers clients,

Depuis trois décennies, l'EcoCut est emblématique par sa polyvalence et son utilisation dans une multitude d'applications. Notre gamme EcoCut se divise en quatre types d'outils différents :

L'EcoCut – Mini est le plus petit de tous et convient au dressage, au tournage de contours extérieurs et intérieurs ainsi qu'au perçage. Ce produit en carbure monobloc est disponible dans les diamètres de 2 à 8 mm. L'EcoCut – Classic couvre les mêmes applications que l'EcoCut – Mini, mais il s'agit d'une combinaison de corps d'outil et de plaquettes. Notre EcoCut – Classic est disponible du diamètre 8 à 32 mm et dans les longueurs 1,5xD, 2,25xD et 3xD.

Un autre membre de la famille est l'EcoCut – ProfileMaster, également avec une combinaison corps d'outil/plaquettes. Il permet à l'utilisateur d'avoir le même champ d'application que la version EcoCut – Classic, mais en plus, il est possible de réaliser des gorges radiales et axiales. Le dernier arrivant dans la gamme est l'EcoCut – Solid, qui atténue les vibrations lors de l'usinage. À partir d'un diamètre de 10 mm jusqu'à 25 mm et avec une longueur de 4xD, il marque des points là où les barres d'alésage traditionnelles doivent souvent s'arrêter.

Vous avez des questions ? Nos experts en tournage se feront un plaisir d'échanger avec vous.

Votre équipe CERATIZIT

EcoCut - La gamme se présente

Que ce soit pour le dressage, alésage, chariottages extérieurs ou pour le perçage en outil fixe ou rotatif, l'EcoCut est l'outil leader pour cette multitude d'applications. Les outils EcoCut sont disponibles en quatre modèles :

EcoCut – Mini, EcoCut – Classic, EcoCut – ProfileMaster et le nouveau EcoCut – Solid.

- ▲ Réduction des temps de fabrication
- ▲ Gain de place sur la tourelle
- ▲ Réalisation du fond plat
- ▲ Temps de programmation réduits
- ▲ Gains de production importants

▲ Temps de préparation réduits

CERATIZIT diversifie son classique avec l'EcoCut – Solid à faibles vibrations

L'EcoCut – Solid complète la gamme à succès EcoCut avec un outil qui remplace un bon nombre de barres d'alésage dans des diamètres à partir de 10 mm.

L'EcoCut – Solid est dans son élément, notamment dans les processus exigeants où la stabilité est une priorité absolue. Pour prévenir les problèmes de gestion copeaux dans les matériaux les plus divers, nous misons sur un montage plaquette asymétrique de l'EcoCut – Solid, qui font fractionner les copeaux de manière sûre et les évacuent rapidement de la zone « critique ». Une meilleure qualité de surface sur pièce finie est souvent une condition de base, l'EcoCut – Solid a ici aussi ses avantages.

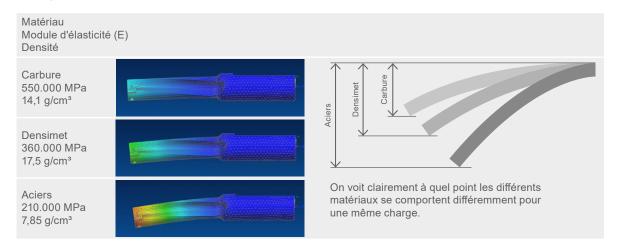
Grâce à un porte-outil en carbure de tungstène monobloc, les usineurs peuvent désormais oublier les vibrations et profiter d'une durée de vie plus longue des plaquettes utilisées.

Caractéristiques

Pas de vibrations

- → usinage en profondeur en toute sécurité
- → surfaces de bonne qualité
- → pour des tolérances exigeantes
- → durée de vie de la plaquette améliorée

Corps d'outil en carbure monobloc


- → meilleure durabilité du corps d'outil
- → stable et robuste
- → pas ou très peu de déflexion

Disponibilité de différentes plaquettes pour un grand nombre de matériaux et d'applications. L'EcoCut – Solid est disponible du Ø10 au Ø25 mm et en longueur 4xD.

Comparatif de stabilité

L'ensemble du porte-outil, y compris l'assise de la plaquette, est fabriqué en carbure monobloc, qui présente une densité élevée ainsi qu'un module d'élasticité supérieur à l'acier. Les propriétés du carbure de tungstène contribuent donc particulièrement à l'amortissement des vibrations. Une comparaison des trois différents matériaux de corps (carbure monobloc, Densimet, acier) est représentée ci-dessous.

EcoCut - Classic

- plusieurs applications sont couvertes avec un seul outil
 - → économise du temps et des emplacements d'outils dans la machine
- ▲ l'EcoCut Classic est très performant et robuste
 - → géométrie d'outil optimisée et usure réduite
- ▲ sécurité maximale du processus
 - → plaquettes avec brise-copeaux fiable

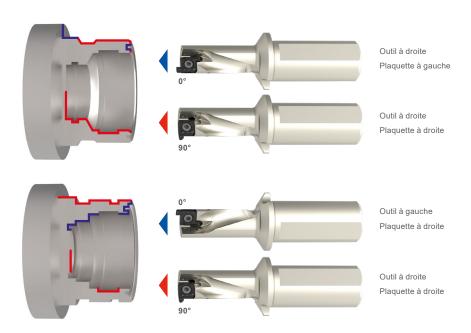
Différentes plaquettes disponibles pour une multitude de matériaux et différentes applications.

L'EcoCut – Classic est disponible du diamètre 8 à 32 mm et dans les longueurs 1,5xD, 2,25xD, 3xD.

EcoCut - Mini

- ▲ pour les petites dimensions de pièces
 → différentes tailles disponibles
- ▲ plusieurs applications avec un seul outil
 - → économise du temps et des emplacements d'outils dans la machine
- ▲ fabriqué en carbure monobloc
 - → augmentation de la stabilité même en cas de coupes interrompues
- ▲ arrosage interne
 - → moins d'usure et moins de congestion copeaux

Différentes tailles disponibles pour une multitude de matériaux et différentes applications.

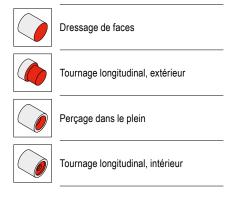

Notre EcoCut – Mini est disponible du diamètre 2 à 8 mm et dans les longueurs 2,25xD et 4xD.

EcoCut - ProfileMaster

- ▲ économise du temps et des emplacements d'outils dans la machine
- ▲ opérations de gorges radiales et axiales possibles
- ▲ usinage de dégagements / piquages
- ▲ tournage de profils intérieurs

Différentes plaquettes disponibles pour un grand nombre de matériaux et d'applications. Notre EcoCut – ProfileMaster est disponible du diamètre 10 à 32 mm et dans les longueurs 1,5xD et 2,25xD.

Table des matières

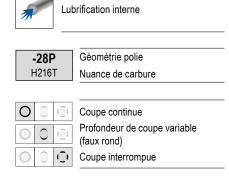

Légende	10
coCut – Solid Profondeurs de passe et avances CoCut – Classic Profondeurs de passe et avances Conseils d'application CoCut – Mini Profondeurs de passe et avances Conseils d'application CoCut – ProfileMaster Profondeurs de passe et avances Conseils d'application CoCut – ProfileMaster Profondeurs de passe et avances Conseils d'application Conditions de coupe Exemples de matières Vitesse de coupe	11
Gamme d'outils	
EcoCut - Solid	12–14
Profondeurs de passe et avances	15
EcoCut - Classic	16–22
Profondeurs de passe et avances	23+24
Conseils d'application	25+26
EcoCut – Mini	27–30
Profondeurs de passe et avances	31
Conseils d'application	32
EcoCut – ProfileMaster	33–36
Profondeurs de passe et avances	37+38
Conseils d'application	39
Conditions de coupe	
Exemples de matières	40
Vitesse de coupe	41
Informations techniques	
Résolution de problèmes	42

CERATIZIT \ Performance

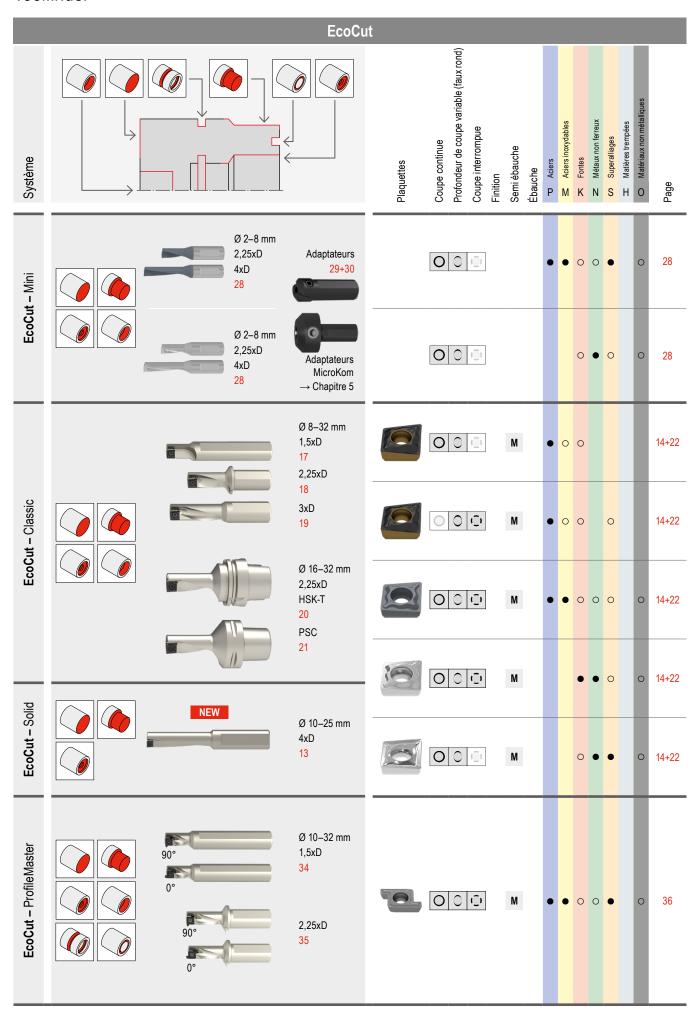
Des outils de qualité Premium pour de plus hautes performances.

Les outils Premium de la ligne de produits CERATIZIT Performance ont été conçus pour répondre aux exigences les plus élevées. Nous vous recommandons ce label Premium pour augmenter votre productivité.

Légende



Semi ébauche


Ébauche

M

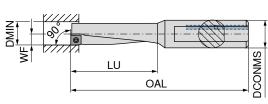
R

Toolfinder

EcoCut - Solid 4xD

- ▲ outil de tournage anti-vibratoire
- ▲ résistant à l'usure

Conditionnement:


Porte-outil livré avec une vis + 2 vis de rechange et une clé

Les illustrations montrent l'exécution à droite

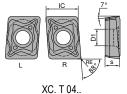
								70 807	/U 806
Désignation ISO	DMIN	DCONMS	OAL	LU	WF	Couple de serrage	Plaquette	EUR	EUR
	mm	mm	mm	mm	mm	Nm		2B/20	2B/20
ECS 10 L 4,0D 04 C	10	12	101	40	5,0	0,4	XC.T 0401EL	450,00 010)00 ²⁾
ECS 10 R 4,0D 04 C	10	12	101	40	5,0	0,4	XC.T 0401ER		450,00 01000 ¹)
ECS 12 R/L 4,0D 05 C	12	16	111	48	6,0	0,7	XC.T 0502	500,00 012	200 500,00 01200
ECS 16 R/L 4,0D 06 C	16	20	126	64	8,0	1,0	XC.T 0602	625,00 01 6	625,00 01600
ECS 20 R/L 4,0D 08 C	20	25	152	80	10,0	2,2	XC.T 0803	750,00 020	750,00 02000
ECS 25 R/L 4,0D 10 C	25	32	175	100	12,5	3,2	XC.T 10T3	950,00 025	950,00 02500

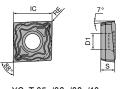
Attention : Porte-outil à droite - plaquette à droite Attention : Porte-outil à gauche - plaquette à gauche

Tournevis Vis 80 950 ... 70 950 ... EUR Pièces détachées **EUR** Y7 2A/28 Plaquette XC.T 0401..EL T06 - IP 13,39 123 M1,8x3,6 - IP 4,84 862 XC.T 0401..ER T06 - IP 13,39 4,84 123 M1,8x3,6 - IP 862 XC.T 0502. T06 - IP 13,39 123 M2x4,3 - IP 4,31 863 XC.T 0602.. T07 - IP 13,18 124 M2,2x5 - IP 4,19 856 XC.T 0803. M3x7 - IP 4,14 819 T09 - IP 14,50 126 XC.T 10T3.. T15 - IP 15,33 **128** M3,5x8,6 - IP 4,14 859

→ Page 15

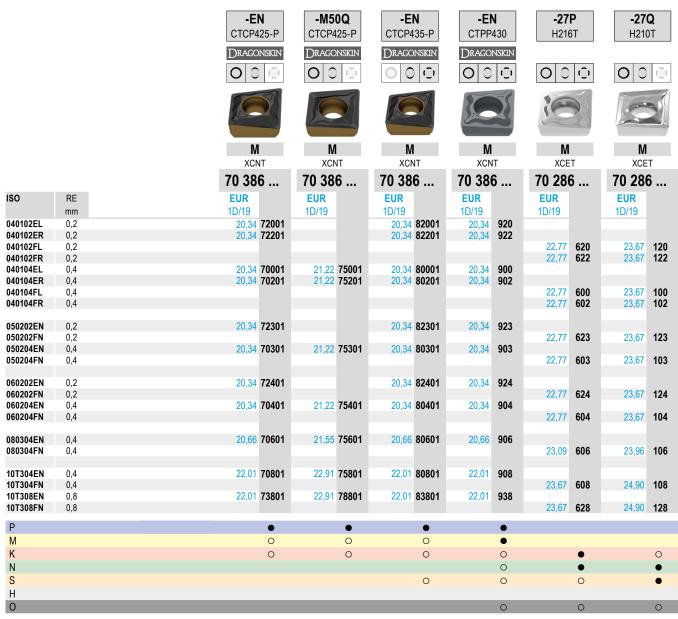
Vous trouverez ici des indications sur la profondeur de passe et l'avance

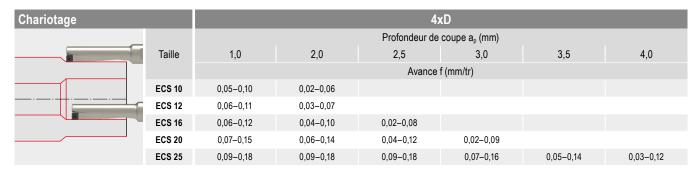



→ Page 14

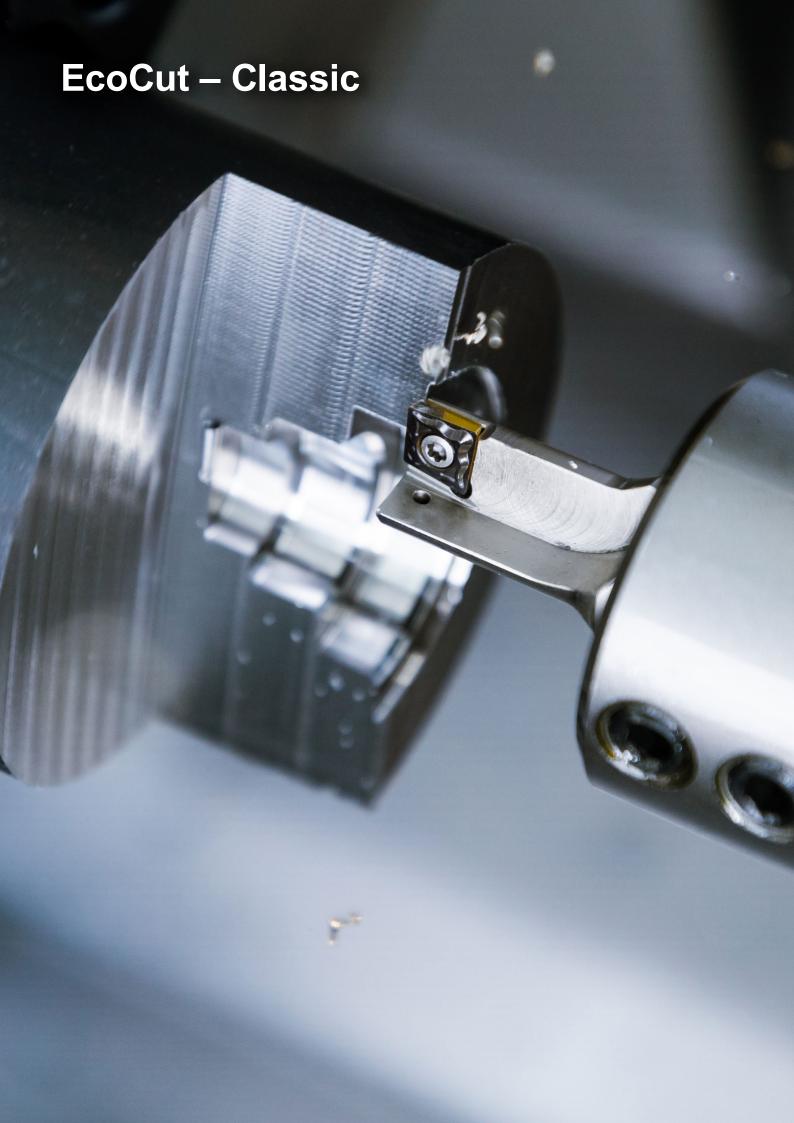
Vous trouverez les plaquettes adaptées.

XCNT / XCET


Design	S	D1	IC
	mm	mm	mm
XC.T 0401	1,80	2,10	4,5
XC.T 0502	2,10	2,25	5,8
XC.T 0602	2,38	2,50	6,5
XC.T 0803	3,18	3,40	8,5
XC.T 10T3	3,97	4,40	10,6


XC. T 05../06../08../10..

XCNT / XCET



 \rightarrow V_c Page 41

EcoCut – Solid – Profondeurs de passe et avances

Dressage de faces		4xD					
	Taille	Profondeur de coupe a_p max. (mm)	Avance f (mm/tr)				
	ECS 10	1,1	0,04-0,07				
	ECS 12	1,2	0,04-0,09				
	ECS 16	1,4	0,05–0,11				
	ECS 20	1,9	0,06–0,13				
	ECS 25	2,2	0,08–0,15				

EcoCut – Classic 1,5xD

▲ Outil de perçage et de tournage

Conditionnement:

Porte-outil livré avec une vis + 2 vis de rechange et une clé

Désignation ISO

ECC 08 L 1,5D 04

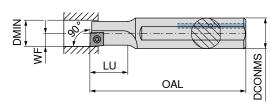
ECC 08 R 1,5D 04

ECC 10 R/L 1,5D 05

ECC 12 R/L 1,5D 06

ECC 14 R/L 1,5D 07

ECC 16 R/L 1,5D 08


ECC 18 R/L 1,5D 09

ECC 20 R/L 1,5D 10

ECC 25 R/L 1,5D 13

ECC 32 R/L 1,5D 17

Les illustrations montrent l'exécution à droite

Couple de serrage

Nm

0.4

0,4

0.7

1,0

1,2

2,2

2,2

3,2

5,0

5,0

Plaquette

XC.T 0401..EL

XC.T 0401..ER

XC.T 0502..

XC.T 0602..

XC.T 0703..

XC.T 0803..

XC.T 09T3..

XC.T 10T3..

XC.T 1304..

XC.T 1705..

70 80	5	70 804				
EUR		EUR				
2B/20		2B/20				
205,20	008 2)					
		205,20	008 1)			
205,20	010	205,20	010			
208,50	012	208,50	012			
213,50	014	213,50	014			
216,90	016	216,90	016			
250,10	018	250,10	018			
281,90	020	281,90	020			
325,20	025	325,20	025			
368,60	032	368,60	032			

Attention : Porte-outil à droite - plaquette à droite Attention : Porte-outil à gauche – plaquette à gauche

DMIN

mm

8

8

10

12

14

16

18

20

25

32

DCONMS

mm

12

12

12

16

16

20

25

25

32

40

OAL

mm

80

80

90

100

110

125

135

150

180

200

LU

mm

12,0

12,0

15.0

18,0

21,0

24,0

27,0

30,0

37.5

48,0

WF

mm

4,0

4,0

5.0

6,0

7,0

8,0

9,0

10,0

12.5

16,0

		Tournevis		Vis
		80 950		70 950
Pièces détachées		EUR		EUR
Plaquette		Y7		2A/28
XC.T 0401EL	T06 - IP	13,39 123	M1,8x3,6 - IP	4,84 862
XC.T 0401ER	T06 - IP	13,39 123	M1,8x3,6 - IP	4,84 862
XC.T 0502	T06 - IP	13,39 123	M2x4,3 - IP	4,31 863
XC.T 0602	T07 - IP	13,18 124	M2,2x5 - IP	4,19 856
XC.T 0703	T08 - IP	13,16 125	M2,5x6 - IP	5,38 857
XC.T 0803	T09 - IP	14,50 126	M3x7 - IP	4,14 819
XC.T 09T3	T09 - IP	14,50 126	M3x7 - IP	4,14 819
XC.T 10T3	T15 - IP	15,33 128	M3,5x8,6 - IP	4,14 859
XC.T 1304	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14 864
XC.T 1705	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14 864

Vous trouverez ici des indications sur la profondeur de passe et l'avance.

→ Page 22

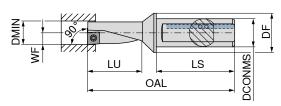
Vous trouverez les plaquettes adaptées.

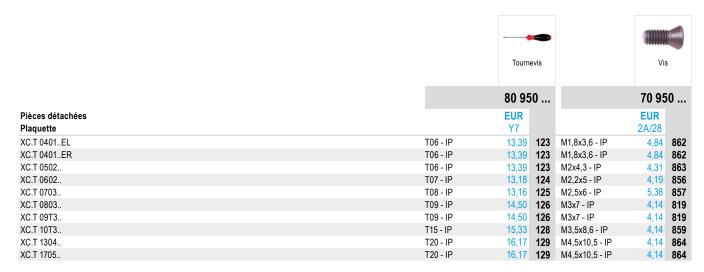
EcoCut - Classic 2,25xD

▲ Outil de perçage et de tournage

Conditionnement:

Porte-outil livré avec une vis + 2 vis de rechange et une clé





Les illustrations montrent l'exécution à droite

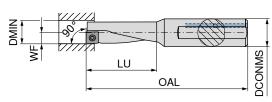
										70 805		70 804	4
Désignation ISO	DMIN	DCONMS	DF	OAL	LU	LS	WF	Couple de serrage	Plaquette	EUR		EUR	
	mm	mm	mm	mm	mm	mm	mm	Nm		2B/20		2B/20	
ECC 08 L 2,25D 04	8	10	15	60,0	18,0	38	4,0	0,4	XC.T 0401EL	305,10	108 ²⁾		
ECC 08 R 2,25D 04	8	10	15	60,0	18,0	38	4,0	0,4	XC.T 0401ER			305,10	108 1)
ECC 10 R/L 2,25D 05	10	12	18	69,5	22,5	42	5,0	0,7	XC.T 0502	305,10	110	305,10	110
ECC 12 R/L 2,25D 06	12	16	22	78,0	27,0	45	6,0	1,0	XC.T 0602	313,60	112	313,60	112
ECC 14 R/L 2,25D 07	14	16	23	83,5	31,5	45	7,0	1,2	XC.T 0703	320,40	114	320,40	114
ECC 16 R/L 2,25D 08	16	20	28	94,0	36,0	50	8,0	2,2	XC.T 0803	327,10	116	327,10	116
ECC 18 R/L 2,25D 09	18	25	36	109,5	40,5	56	9,0	2,2	XC.T 09T3	360,40	118	360,40	118
ECC 20 R/L 2,25D 10	20	25	35	111,0	45,0	56	10,0	3,2	XC.T 10T3	392,20	120	392,20	120
ECC 25 R/L 2,25D 13	25	32	44	129,0	56,5	60	12,5	5,0	XC.T 1304	455,40	125	455,40	125
ECC 32 R/L 2,25D 17	32	40	54	158,0	72,0	70	16,0	5,0	XC.T 1705	512,00	132	512,00	132

- 1) Attention : Porte-outil à droite plaquette à droite
- 2) Attention : Porte-outil à gauche plaquette à gauche

Vous trouverez ici des indications sur la profondeur de passe et l'avance.

→ Page 22

Vous trouverez les plaquettes adaptées.


EcoCut - Classic 3xD - Métal lourd anti-vibratoire

- ▲ Outil de perçage et de tournage ▲ Anti-vibratoire

Conditionnement:

Porte-outil livré avec une vis + 2 vis de rechange et une clé

Les illustrations montrent l'exécution à droite

								70 80	5	70 804	4
Désignation ISO	DMIN	DCONMS	OAL	LU	WF	Couple de serrage	Plaquette	EUR		EUR	
	mm	mm	mm	mm	mm	Nm		2B/20		2B/20	
ECC 08 L 3,00D 04 H	8	12	80	24	4,0	0,4	XC.T 0401EL	752,60	608 ²⁾		
ECC 08 R 3,00D 04 H	8	12	80	24	4,0	0,4	XC.T 0401ER			752,60	608 1)
ECC 10 R/L 3,00D 05 H	10	12	85	30	5,0	0,7	XC.T 0502	755,90	610	755,90	610
ECC 12 R/L 3,00D 06 H	12	16	95	36	6,0	1,0	XC.T 0602	815,80	612	815,80	612
ECC 14 R/L 3,00D 07 H	14	16	100	42	7,0	1,2	XC.T 0703	834,80	614	834,80	614
ECC 16 R/L 3,00D 08 H	16	20	110	48	8,0	2,2	XC.T 0803	915,40	616	915,40	616
ECC 18 R/L 3,00D 09 H	18	25	125	54	9,0	2,2	XC.T 09T3	1.108,00	618	1.108,00	618
ECC 20 R/L 3,00D 10 H	20	25	130	60	10,0	3,2	XC.T 10T3	1.131,00	620	1.131,00	620
ECC 25 R/L 3,00D 13 H	25	32	150	75	12,5	5,0	XC.T 1304	1.440,00	625	1.440,00	625
ECC 32 R/L 3,00D 17 H	32	40	185	96	16,0	5,0	XC.T 1705	1.885,00	632	1.885,00	632

Attention : Porte-outil à droite – plaquette à droite Attention : Porte-outil à gauche – plaquette à gauche

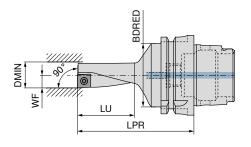
		Tournevis		Vis
		80 950		70 950
Pièces détachées		EUR		EUR
Plaquette		Y7		2A/28
XC.T 0401EL	T06 - IP	13,39 123	M1,8x3,6 - IP	4,84 862
XC.T 0401ER	T06 - IP	13,39 123	M1,8x3,6 - IP	4,84 862
XC.T 0502	T06 - IP	13,39 123	M2x4,3 - IP	4,31 863
XC.T 0602	T07 - IP	13,18 124	M2,2x5 - IP	4,19 856
XC.T 0703	T08 - IP	13,16 125	M2,5x6 - IP	5,38 857
XC.T 0803	T09 - IP	14,50 126	M3x7 - IP	4,14 819
XC.T 09T3	T09 - IP	14,50 126	M3x7 - IP	4,14 819
XC.T 10T3	T15 - IP	15,33 128	M3,5x8,6 - IP	4,14 859
XC.T 1304	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14 864
XC.T 1705	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14 864

Vous trouverez ici des indications sur la profondeur de passe et l'avance

→ Page 22

Vous trouverez les plaquettes adaptées.

EcoCut – Classic HSK-T 2,25xD


Conditionnement:

Porte-outil livré avec une vis + 2 vis de rechange et une clé

Les illustrations montrent l'exécution à droite

À gauche

À droite

									74 591	74 590
Désignation ISO	Attachement	LPR	LU	BDRED	WF	DMIN	Couple de serrage	Plaquette	EUR	EUR
		mm	mm	mm	mm	mm	Nm		2D/80	2D/80
HSK-T 63 ECC 16 R/L 2,25D 08	HSK-T 63	84	36,00	50	8,0	16	2,2	XC.T 0803	392,50 51637	392,50 51637
HSK-T 63 ECC 20 R/L 2,25D 10	HSK-T 63	92	45,00	50	10,0	20	3,2	XC.T 10T3	470,60 52037	470,60 52037
HSK-T 63 ECC 25 R/L 2,25D 13	HSK-T 63	104	56,25	50	12,5	25	5,0	XC.T 1304	546,50 52537	546,50 52537
HSK-T 63 ECC 32 R/L 2,25D 17	HSK-T 63	120	72,00	50	16,0	32	5,0	XC.T 1705	614,40 53237	614,40 53237

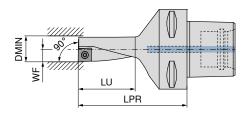
		Tournevis		Vis	
		80 950		70 950	0
Pièces détachées		EUR		EUR	
Plaquette		Y7		2A/28	
XC.T 0803	T09 - IP	14,50 126	M3x7 - IP	4,14	819
XC.T 10T3	T15 - IP	15,33 128	M3,5x8,6 - IP	4,14	859
XC.T 1304	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14	864
XC.T 1705	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14	864

→ Page 23+24

Vous trouverez ici des indications sur la profondeur de passe et l'avance.

→ Page 22 Vous trouverez les plaquettes adaptées.

EcoCut - Classic PSC 2,25xD


Conditionnement:

Porte-outil livré avec une vis + 2 vis de rechange et une clé

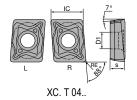
Les illustrations montrent l'exécution à droite

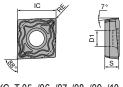
			À gauche	À droite					
								74 591	74 590
Désignation ISO	Attachement	LPR	LU	WF	DMIN	Couple de serrage	Plaquette	EUR	EUR
		mm	mm	mm	mm	Nm		2D/80	2D/80
PSC 50 ECC 16 R/L 2,25D 08	PSC 50	70	36,00	8,0	16	2,2	XC.T 0803	392,50 51694	392,50 51694
PSC 50 ECC 20 R/L 2,25D 10	PSC 50	81	45,00	10,0	20	3,2	XC.T 10T3	470,60 52094	470,60 52094
PSC 50 ECC 25 R/L 2,25D 13	PSC 50	93	56,25	12,5	25	5,0	XC.T 1304	546,50 52594	546,50 52594
PSC 50 ECC 32 R/L 2,25D 17	PSC 50	110	72,00	16,0	32	5,0	XC.T 1705	614,40 53294	614,40 53294
PSC 63 ECC 16 R/L 2,25D 08	PSC 63	75	36,00	8,0	16	2,2	XC.T 0803	392,50 51693	392,50 51693
PSC 63 ECC 20 R/L 2,25D 10	PSC 63	86	45,00	10,0	20	3,2	XC.T 10T3	470,60 52093	470,60 52093
PSC 63 ECC 25 R/L 2,25D 13	PSC 63	97	56,25	12,5	25	5,0	XC.T 1304	546,50 52593	546,50 52593
PSC 63 ECC 32 R/L 2,25D 17	PSC 63	114	72,00	16,0	32	5,0	XC.T 1705	614,40 53293	614,40 53293

		Tournevis		Vis	
		80 950		70 95	0
Pièces détachées		EUR		EUR	
Plaquette		Y7		2A/28	
XC.T 0803	T09 - IP	14,50 126	M3x7 - IP	4,14	819
XC.T 10T3	T15 - IP	15,33 128	M3,5x8,6 - IP	4,14	859
XC.T 1304	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14	864
XC.T 1705	T20 - IP	16,17 129	M4,5x10,5 - IP	4,14	864

→ Page 23+24

Vous trouverez ici des indications sur la profondeur de passe et l'avance.


→ Page 22


Vous trouverez les plaquettes adaptées.

21

XCNT / XCET

Design	S	D1	IC
	mm	mm	mm
XC.T 0401	1,80	2,10	4,5
XC.T 0502	2,10	2,25	5,8
XC.T 0602	2,38	2,50	6,5
XC.T 0703	3,18	2,80	7,6
XC.T 0803	3,18	3,40	8,5
XC.T 09T3	3,97	3,40	9,6
XC.T 10T3	3,97	4,40	10,6
XC.T 1304	4,76	5,30	13,5
XC.T 1705	5,56	5,30	17,5

XC. T 05../06../07../08../09../10../ 13../17..

XCNT / XCET

		-EN		-M50		-El		-EN		-27		-27	
		Dragor		DRAGO		CTCP4		DRAGO		H216	01	H21	101
		00	(<u>0</u>)	00	Û	00		00	Ü	00	O	00	
			5						1	36			
		M XCN		M XCN		M XCN		M XCN	т	M XCE		XCE	
		70 386		70 38		70 38		70 386		70 280		70 28	
			5		0		0))		O
	RE	EUR		EUR		EUR		EUR		EUR		EUR	
102EL	mm	1D/19	72004	1D/19		1D/19	02004	1D/19	020	1D/19		1D/19	
102EL 102ER	0,2 0,2	20,34 20,34					82001 82201	20,34 20,34	920 922				
102EK 102FL	0,2	20,34	72201			20,34	02201	20,34	922	22,77	620	23,67	
102FR	0,2									22,77	622	23,67	
104EL	0,4	20,34	70001	21.22	75001	20.34	80001	20,34	900	22,11	V	20,01	
104ER	0,4	20,34			75201		80201	20,34	902				
104FL	0,4	- / -		,		- /-		- , -		22,77	600	23,67	
104FR	0,4									22,77	602	23,67	
202EN	0,2	20,34	72301			20,34	82301	20,34	923				
202FN	0,2	20.04	70004	04.00	75004	00.04	00004	00.04		22,77	623	23,67	
204EN	0,4	20,34	70301	21,22	75301	20,34	80301	20,34	903	00.77		00.07	
204FN	0,4									22,77	603	23,67	
202EN	0,2	20,34	72404			20.34	82401	20,34	924				
202EN 202FN	0,2	20,34	72401			20,04	02401	20,04	324	22,77	624	23,67	1
204EN	0,4	20,34	70401	21 22	75401	20.34	80401	20,34	904	22,11	024	20,01	
204FN	0,4	20,0 .	. • . • .	,		20,0	••••	20,0 .	•••	22,77	604	23,67	
										,			
304EN	0,4	20,34	70501	21,22	75501	20,34	80501	20,34	905				
304FN	0,4									22,77	605	23,67	
		00.00	70004	04.55	75004	00.00	00004	00.00					
304EN	0,4	20,66	70601	21,55	75601	20,66	80601	20,66	906	02.00	coc	02.00	
304FN	0,4									23,09	606	23,96	3
304EN	0,4	20,96	70701	22.01	75701	20.96	80701	20,96	907				
304EN	0,4	20,90	.0101	22,01	10101	20,30	30701	20,30	301	23,21	607	24,12	
	-1.									20,21		۲, ۱۷	
304EN	0,4	22,01	70801	22,91	75801	22,01	80801	22,01	908				
304FN	0,4	,-		,		· .				23,67	608	24,90) .
308EN	0,8	22,01	73801	22,91	78801	22,01	83801	22,01	938				
308FN	0,8									23,67	628	24,90) .
10.1511	0.4	05.45	74004	00.07	70004	05.47	04004	05.45	040				
404EN	0,4	25,17	/1001	26,37	76001	25,17	81001	25,17	910	20.05	640	20.44	
404FN 408EN	0,4 0,8	25,17	74004	26.27	79001	0E 47	94004	25,17	040	28,95	010	30,14	
408EN 408FN	0,8	20,17	7400 I	20,37	7 300 1	25,17	84001	20,17	J40	28,95	611	30,14	
-001 IV	0,0									20,90	VII	50, 14	
508EN	0,8	26,54	71201	27.89	76201	26.54	81201	26,54	912				
508FN	0,8	20,0 .		2.,00	. •=• .	20,0	•• .	20,0 .	•	29,38	612	30,89	
										.,			
			•		•		•		•				
			0		0		0		•				
			0		0		0		0		•		
									0		•		
							0		0		0		

EcoCut – Classic – Profondeurs de passe et avances

Chariotage							1,5	ixD					
						Prof	ondeur de	coupe a _p (mm)				
	Taille	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	12,0	14,0
		Avance f (mm/tr)											
	ECC 08	0,06-0,12	0,06-0,12	0,04-0,10	0,02-0,08								
	ECC 10	0,07-0,15	0,07-0,15	0,05-0,13	0,04-0,11	0,02-0,09							
	ECC 12	0,08-0,16	0,08-0,16	0,08-0,16	0,06-0,14	0,04-0,12	0,02-0,10						
	ECC 14	0,09-0,18	0,09-0,18	0,09-0,18	0,09-0,18	0,07-0,16	0,05-0,14	0,02-0,11					
	ECC 16	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,08-0,18	0,06-0,16	0,04-0,14	0,02-0,12				
	ECC 18	0,11-0,22	0,11-0,22	0,11-0,22	0,11-0,22	0,11-0,22	0,09-0,20	0,07-0,18	0,05-0,16	0,03-0,13			
	ECC 20	0,12-0,24	0,12-0,24	0,12-0,24	0,12-0,24	0,12-0,24	0,11-0,23	0,09-0,21	0,07-0,19	0,05-0,17	0,03-0,15		
	ECC 25	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,11-0,24	0,09-0,22	0,07-0,20	0,03-0,16	
	ECC 32	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,14-0,30	0,15-0,30	0,15-0,30	0,13-0,28	0,11-0,26	0,07-0,22	0,03-0,18

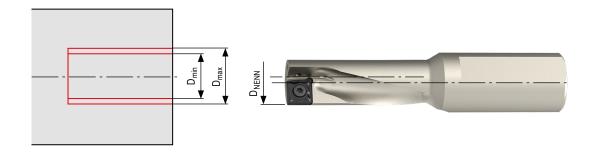
L'avance f peut être augmentée de 50 à 75 % lors de l'emploi de plaquettes -M50Q ou -27Q.

Chariotage							2,25xD					
						Profonde	eur de coupe	e a _p (mm)				
	Taille	1,0	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	7,0
			Avance f (mm/tr)									
	ECC 08	0,06-0,12	0,04-0,10	0,02-0,08								
	ECC 10	0,07-0,15	0,05-0,13	0,03-0,11	0,02-0,09							
	ECC 12	0,08-0,16	0,08-0,16	0,06-0,14	0,04-0,12	0,02-0,10						
	ECC 14	0,09-0,18	0,09-0,18	0,07-0,16	0,05-0,14	0,04-0,13	0,02-0,11					
	ECC 16	0,10-0,20	0,10-0,20	0,09-0,19	0,07-0,17	0,05-0,15	0,03-0,13					
	ECC 18	0,11-0,22	0,11-0,22	0,11-0,22	0,09-0,20	0,07-0,18	0,05-0,16	0,03-0,14				
	ECC 20	0,12-0,24	0,12-0,24	0,12-0,24	0,12-0,24	0,10-0,22	0,08-0,20	0,06-0,18	0,04-0,16			
	ECC 25	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,13-0,26	0,12-0,25	0,10-0,23	0,08-0,21	0,06-0,19	0,04-0,17	
	ECC 32	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,14-0,29	0,12-0,27	0,10-0,25	0,08-0,23	0,05-0,20

L'avance f peut être augmentée de 50 à 75 % lors de l'emploi de plaquettes -M50Q ou -27Q.

Chariotage					3xD								
			Profondeur de coupe a₂ (mm)										
	Taille	1,0	2,0	2,5	3,0	3,5	4,0	5,0					
		Avance f (mm/tr)											
	ECC 08	0,05-0,10	0,02-0,06										
	ECC 10	0,06-0,11	0,03-0,07										
	ECC 12	0,06-0,12	0,04-0,10	0,02-0,08									
	ECC 14	0,07-0,13	0,05-0,11	0,02-0,09									
	ECC 16	0,07-0,15	0,06-0,14	0,04-0,12	0,02-0,09								
	ECC 18	0,08-0,16	0,08-0,16	0,06-0,14	0,04-0,12								
	ECC 20	0,09-0,18	0,09-0,18	0,09-0,18	0,07-0,16	0,05-0,14	0,03-0,12						
	ECC 25	0,10-0,19	0,10-0,19	0,10-0,19	0,08-0,17	0,06-0,15	0,03-0,13						
	ECC 32	0,11-0,22	0,11-0,22	0,11-0,22	0,11-0,22	0,09-0,20	0,07-0,18	0,03-0,14					

EcoCut – Classic – Profondeurs de passe et avances


Dressage de faces		1,5	xD	2,2	5xD	31	d D
	Taille	Profondeur de coupe a _p (mm)	Avance f (mm/tr)	Profondeur de coupe a _p (mm)	Avance f (mm/tr)	Profondeur de coupe a _p (mm)	Avance f (mm/tr)
	ECC 08	2,00	0,05-0,10	1,90	0,04-0,09	1,10	0,04-0,07
	ECC 10	2,50	0,06-0,12	2,20	0,05-0,10	1,20	0,04-0,09
	ECC 12	3,00	0,07-0,14	2,60	0,06-0,12	1,40	0,05-0,11
	ECC 14	3,50	0,08-0,16	3,00	0,07-0,14	1,60	0,06-0,12
	ECC 16	4,00	0,09-0,18	3,40	0,08-0,16	1,90	0,06-0,13
	ECC 18	4,50	0,10-0,20	3,80	0,09-0,18	2,00	0,07-0,14
	ECC 20	5,00	0,11-0,22	4,20	0,10-0,20	2,20	0,08-0,15
	ECC 25	6,00	0,12-0,24	5,00	0,11-0,22	2,60	0,09-0,18
	ECC 32	8,00	0,13-0,27	6,00	0,12-0,25	3,00	0,10-0,20

Perçage		1,5	xD	2,2	5xD	3	хD
	Taille	Avance f (mm/tr)	Prof. maximale (mm)	Avance f (mm/tr)	Prof. maximale (mm)	Avance f (mm/tr)	Prof. maximale (mm)
	ECC 08	0,01-0,04	12,0	0,01-0,04	18,0	0,01-0,02	24,0
	ECC 10	0,01-0,05	15,0	0,01-0,05	22,5	0,01-0,03	30,0
	ECC 12	0,01-0,05	18,0	0,01-0,05	27,0	0,01-0,04	36,0
	ECC 14	0,01-0,07	21,0	0,01-0,07	31,5	0,01-0,05	42,0
	ECC 16	0,02-0,08	24,0	0,02-0,08	36,0	0,02-0,06	48,0
	ECC 18	0,03-0,09	27,0	0,03-0,09	40,5	0,03-0,07	54,0
	ECC 20	0,03-0,10	30,0	0,03-0,10	45,0	0,03-0,08	60,0
	ECC 25	0,03-0,12	37,5	0,03-0,12	56,5	0,04-0,09	75,0
	ECC 32	0,05-0,15	48,0	0,05-0,15	72,0	0,05-0,11	96,0

EcoCut - Classic - Conseils d'application

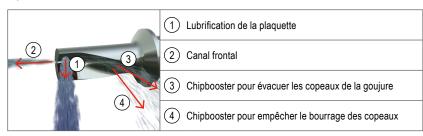
Perçage excentré

Grâce à la conception particulière de l'outil et de la plaquette, il est possible de percer décalé du centre avec les outils EcoCut. Il est donc possible d'obtenir des cotes spécifiques proches du Ø nominal de l'outil.

	Ø nominal de l'outil	Ø Perçage	possible
Taille	D _{NENN} (mm)	D _{min} (mm)	D _{max} (mm)
ECC 08	8	7,85	8,30
ECC 10	10	9,85	10,50
ECC 12	12	11,85	12,50
ECC 14	14	13,85	14,50
ECC 16	16	15,85	16,50
ECC 18	18	17,85	18,50
ECC 20	20	19,80	20,50
ECC 25	25	24,80	25,80
ECC 32	32	31,80	33,00

Montage de la plaquette

Les outils \emptyset 8 mm requièrent l'utilisation de plaquettes à gauche et à droite. Pour les diamètres \emptyset 10 à 32 mm, les plaquettes sont neutres.


Attention!

Veillez à monter correctement les plaquettes.

Évacuation optimale des copeaux - Chip-Booster

L'EcoCut dispose d'un système unique de lubrification et d'évacuation de copeaux.

(1)

Afin de garantir une bonne évacuation des copeaux la pression du lubrifiant doit se situer entre 3 et 6 bars (optimale entre 7 et 10 bars).

EcoCut – Classic – Excellente stabilité également en tournage

L'EcoCut n'est pas un outil Multi-fonctions conventionnel. Il vous procure, par ses performances élevées, des avantages certains.

Exemple: Réalisation d'un alésage de diamètre 16 mm, profondeur 36 mm

Différences entre les outils

Vos avantages

Porte-outil massif et stable

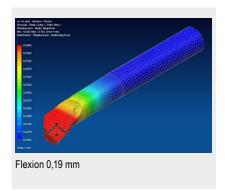
- ▲ Possibilité de forces de coupe élevées
- ▲ Réduction des vibrations
- ▲ Chip Booster pour une lubrification parfaite et un flux optimal des copeaux

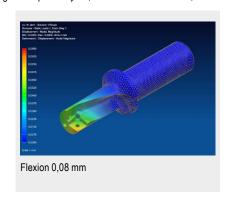
Profits

- ▲ Grande qualité des états de surface
- ▲ Fragmentation parfaite des copeaux
- ▲ Sécurité maximale

Différences entre les plaquettes

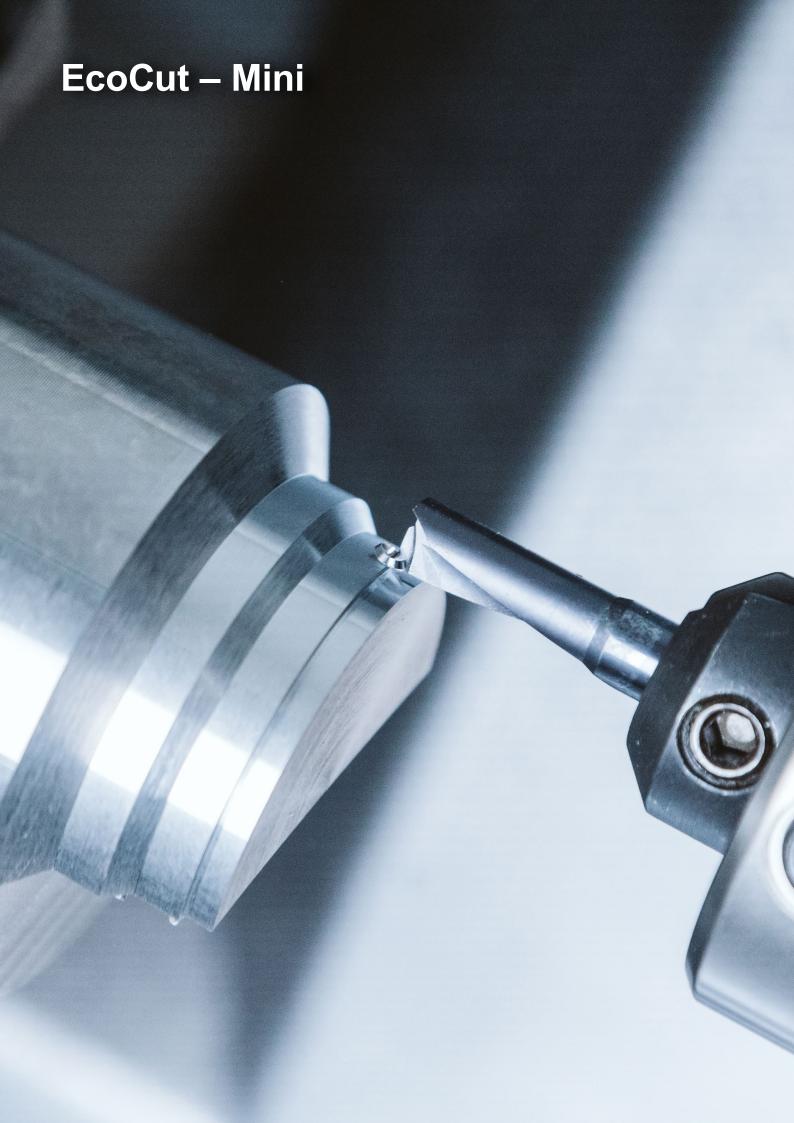
Plaquette plus épaisse et plus stable

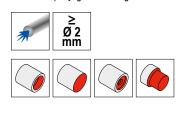

- ▲ Augmentation de la sécurité du processus
- ▲ Augmentation possible des profondeurs de passe
- ▲ Conditions de coupe plus élevées
- ▲ Durée de vie plus importante

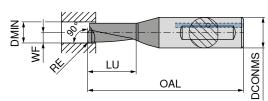

Profits

- ▲ Réduction des temps de cycle
- ▲ Augmentation de la productivité
- ▲ Réduction des coûts d'outils

Comparatif de stabilité


Modélisation avec FEM Une charge de 1000 N sur le logement de plaquette est générée par un a_p = 2,0 mm et une avance f = 0,2 mm


La pratique prouve :


- ▲ Réduction du temps de cycle jusqu'à **75** %
- ▲ Augmentation possible de la durée de vie de **400** %

EcoCut - Mini

▲ Outil de perçage et tournage en carbure monobloc

Les illustrations montrent l'exécution à droite

CTPP435 DRAGONSKIN	CTPP435 DRAGONSKIN	CTWN425	CTWN425
000	000	000	

Carbure monobloc

À gauche

Carbure monobloc

À droite

Carbure monobloc

À droite

Carbure monobloc

À gauche

• 0 0

• • • •

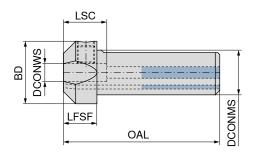
0 • 0

							70 80	5	70 80	4	70 80	5	70 80	4
Désignation ISO	DMIN	DCONMS	OAL	LU	WF	RE	EUR		EUR		EUR		EUR	
	mm	mm	mm	mm	mm	mm	2B/20		2B/20		2B/20		2B/20	
ECM 02 R/L 2,25D	2,0	4	28	4,50	1,00	0,1	66,97	320	66,97	320				
ECM 02 R/L 2,25D AL	2,0	4	28	4,50	1,00	0,1					59,05	420	59,05	420
ECM 02 R/L 4,00D	2,0	4	31	8,00	1,00	0,1	70,26	321	70,26	321				
ECM 02 R/L 4,00D AL	2,0	4	31	8,00	1,00	0,1					61,92	421	61,92	421
ECM 02,5 R/L 2,25D	2,5	4	29	5,63	1,25	0,1	69,04	325	69,04	325				
ECM 02,5 R/L 2,25D AL	2,5	4	29	5,63	1,25	0,1					60,82	425	60,82	425
ECM 02,5 R/L 4,00D	2,5	4	33	10,00	1,25	0,1	72,46	326	72,46	326				
ECM 02,5 R/L 4,00D AL	2,5	4	33	10,00	1,25	0,1					63,85	426	63,85	426
ECM 03 R/L 2,25D	3,0	4	31	6,75	1,50	0,1	71,21	330	71,21	330				
ECM 03 R/L 2,25D AL	3,0	4	31	6,75	1,50	0,1					62,74	430	62,74	430
ECM 03 R/L 4,00D	3,0	4	35	12,00	1,50	0,1	74,77	331	74,77	331				
ECM 03 R/L 4,00D AL	3,0	4	35	12,00	1,50	0,1					65,89	431	65,89	431
ECM 03,5 R/L 2,25D	3,5	4	32	7,88	1,75	0,1	73,95	335	73,95	335				
ECM 03,5 R/L 2,25D AL	3,5	4	32	7,88	1,75	0,1					65,19	435	65,19	435
ECM 03,5 R/L 4,00D	3,5	4	37	14,00	1,75	0,1	77,64	336	77,64	336				
ECM 03,5 R/L 4,00D AL	3,5	4	37	14,00	1,75	0,1					68,47	436	68,47	436
ECM 04 R/L 2,25D	4,0	6	35	9,00	2,00	0,2	78,54	300	78,54	300				
ECM 04 R/L 2,25D AL	4,0	6	35	9,00	2,00	0,2					69,17	450	69,17	450
ECM 04 R/L 4,00D	4,0	6	41	16,00	2,00	0,2	82,45	301	82,45	301				
ECM 04 R/L 4,00D AL	4,0	6	41	16,00	2,00	0,2					72,64	451	72,64	451
ECM 05 R/L 2,25D	5,0	6	37	11,25	2,50	0,2	81,25	302	81,25	302				
ECM 05 R/L 2,25D AL	5,0	6	37	11,25	2,50	0,2					71,14	452	71,14	452
ECM 05 R/L 4,00D	5,0	6	45	20,00	2,50	0,2	85,01	303	85,01	303				
ECM 05 R/L 4,00D AL	5,0	6	45	20,00	2,50	0,2					74,60	453	74,60	453
ECM 06 R/L 2,25D	6,0	8	38	13,50	3,00	0,2	83,36	306	83,36	306				
ECM 06 R/L 2,25D AL	6,0	8	38	13,50	3,00	0,2					73,55	456	73,55	456
ECM 06 R/L 4,00D	6,0	8	49	24,00	3,00	0,2	87,56	312	87,56	312				
ECM 06 R/L 4,00D AL	6,0	8	49	24,00	3,00	0,2					76,86	462	76,86	462
ECM 07 R/L 2,25D	7,0	8	42	15,75	3,50	0,2	85,91	308	85,91	308				
ECM 07 R/L 2,25D AL	7,0	8	42	15,75	3,50	0,2					75,80	458	75,80	458
ECM 07 R/L 4,00D	7,0	8	53	28,00	3,50	0,2	90,44	314	90,44	314				
ECM 07 R/L 4,00D AL	7,0	8	53	28,00	3,50	0,2					79,29	464	79,29	464
ECM 08 R/L 2,25D	8,0	8	45	18,00	4,00	0,2	88,78	310	88,78	310				
ECM 08 R/L 2,25D AL	8,0	8	45	18,00	4,00	0,2					77,92	460	77,92	460
ECM 08 R/L 4,00D	8,0	8	57	32,00	4,00	0,2	92,99	316	92,99	316				
ECM 08 R/L 4,00D AL	8,0	8	57	32,00	4,00	0,2					81,68	466	81,68	466

 $\rightarrow V_c$ Page 41

→ Page 31

Vous trouverez ici des indications sur la profondeur de passe et l'avance.

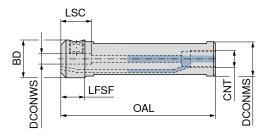

P M K N S H

EcoCut – Adaptateur Mini

Conditionnement :

Porte-outil livré avec une vis

							70
Design	DCONWS	DCONMS	BD	OAL	LFSF	LSC	EUR
	mm	mm	mm	mm	mm	mm	2B/2
EC-ADX16-04	4	16	22	59	14	18	243.
EC-ADX20-04	4	20	25	64	14	18	243,
EC-ADX16-06	6	16	22	59	14	18	243,
EC-ADX20-06	6	20	25	64	14	18	243,
EC-ADX16-08	8	16	22	59	14	18	243,
EC-ADX20-08	8	20	25	64	14	18	243,



EcoCut - Adaptateur Mini avec lubrification centrale par raccord fileté

Conditionnement :

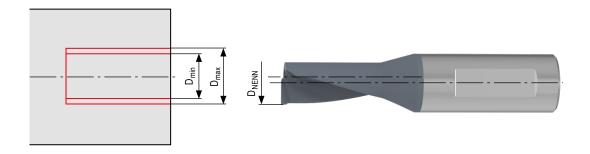
Porte-outil livré avec une vis

								70 80 ⁻	1
Design	DCONWS	DCONMS	BD	OAL	LFSF	LSC	CNT	EUR	
	mm	mm	mm	mm	mm	mm		2B/20	
ECA 16-04	4	16	20,0	75	14	18	G 1/8	129,90	716
ECA 20-04	4	20	19,6	90	14	18	G 1/8	132,70	720
ECA 22-04	4	22	21,6	110	14	18	G 1/8	136,70	722
ECA 16-06	6	16	22,0	75	14	18	G 1/8	129,90	816
ECA 20-06	6	20	22,0	90	14	18	G 1/8	132,70	820
ECA 22-06	6	22	21,6	110	14	18	G 1/8	136,70	822
ECA 16-08	8	16	22,0	75	14	18	G 1/8	129,90	916
ECA 20-08	8	20	22,0	90	14	18	G 1/8	132,70	920
ECA 22-08	8	22	21,6	110	14	18	G 1/8	136,70	922

EcoCut – Mini – Profondeurs de passe et avances

Chariotage						2,2	5xD						
					Pr	ofondeur de	coupe a _p (m	m)					
	Taille	0,25	0,5	0,75	1,0	1,5	2,0	2,5	3,0	3,5	4,0		
		Avance f (mm/tr)											
	ECM 02	0,02-0,07	0,02-0,07										
	ECM 02,5	0,02-0,07	0,02-0,07	0,02-0,05									
	ECM 03	0,02-0,07	0,02-0,07	0,02-0,05	0,02-0,05								
	ECM 03,5	0,02-0,07	0,02-0,07	0,02-0,05	0,02-0,05	0,02-0,05							
	ECM 04	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,07	0,01-0,05						
	ECM 05	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,02-0,06	0,01-0,04					
	ECM 06	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,02-0,06	0,01-0,04				
	ECM 07	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,02-0,06	0,01-0,04			
	ECM 08	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,02-0,06	0,01-0,04		

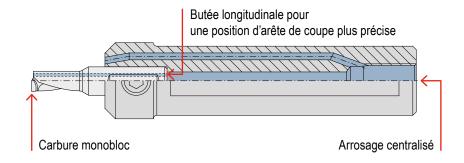
Chariotage		4xD										
					Profondeur de	coupe a _p (mm)						
	Taille	0,25	0,5	0,75	1,0	1,5	2,0	2,5	3,0			
					Avance	f (mm/tr)						
	ECM 02	0,02-0,05	0,01-0,05									
	ECM 02,5	0,02-0,05	0,01-0,05									
	ECM 03	0,02-0,05	0,02-0,05	0,01-0,05								
	ECM 03,5	0,02-0,05	0,02-0,05	0,02-0,05	0,01-0,05							
	ECM 04	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,01-0,05						
	ECM 05	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,085	0,02-0,06	0,01-0,04					
	ECM 06	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,085	0,02-0,06	0,01-0,04					
	ECM 07	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,03-0,08	0,02-0,06	0,01-0,04				
	ECM 08	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,1	0,04-0,095	0,03-0,08	0,02-0,06	0,01-0,04			


Dressage de faces		2,2	5xD	43	(D
	Taille	Profondeur de coupe a _p max. (mm)	Avance f (mm/tr)	Profondeur de coupe a _p max. (mm)	Avance f (mm/tr)
	ECM 02	0,30	0,01-0,05	0,30	0,01-0,03
	ECM 02,5	0,30	0,01-0,05	0,30	0,01-0,03
	ECM 03	0,50	0,01-0,06	0,50	0,01-0,04
	ECM 03,5 ECM 04	0,50	0,01-0,06	0,50	0,01-0,04
		0,70	0,03-0,07	0,70	0,02-0,05
	ECM 05	0,70	0,03-0,07	0,70	0,02-0,05
	ECM 06	0,70	0,03-0,07	0,70	0,02-0,05
	ECM 07	1,00	0,04-0,08	1,00	0,03-0,06
	ECM 08	1,00	0,04-0,08	1,00	0,03-0,06

Perçage		2,2	5xD	4xD			
	Taille	Avance f (mm/tr)	Prof. maximale (mm)	Avance f (mm/tr)	Prof. maximale (mm)		
	ECM 02	0,0025-0,0075	4,50	0,0025-0,005	8,0		
	ECM 02,5	0,0025-0,010	5,63	0,0025-0,005	10,0		
	ECM 03	0,0025-0,0125	6,75	0,0025-0,010	12,0		
	ECM 03,5	0,0025-0,0150	7,88	0,0025-0,010	14,0		
	ECM 04	0,005-0,030	9,0	0,005-0,0125	16,0		
	ECM 05	0,005-0,030	11,25	0,005-0,015	20,0		
	ECM 06	0,005-0,030	13,5	0,005-0,020	24,0		
	ECM 07	0,005-0,035	15,75	0,005-0,025	28,0		
	ECM 08	0,005-0,040	18,0	0,005-0,030	32,0		

EcoCut - Mini - Conseils d'application

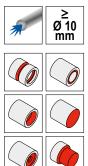
Perçage excentré

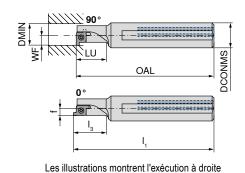

Grâce à la conception particulière de l'outil, il est possible de percer décalé du centre avec les outils EcoCut. Il est donc possible d'obtenir des cotes spécifiques proches du Ø nominal de l'outil.

	Ø nominal de l'outil	Ø Perçage	e possible
Taille	D _{NENN} (mm)	D _{min} (mm)	D _{max} (mm)
ECM 02	2	1,95	2,1
ECM 02,5	2,5	2,45	2,6
ECM 03	3	2,95	3,15
ECM 03,5	3,5	3,45	3,65
ECM 04	4	3,90	4,20
ECM 05	5	4,90	5,20
ECM 06	6	5,90	6,20
ECM 07	7	6,90	7,20
ECM 08	8	7,90	8,20

Mini - Adaptateurs

Vue en coupe pour une meilleure représentation des canaux d'arrosage et de la face d'appui

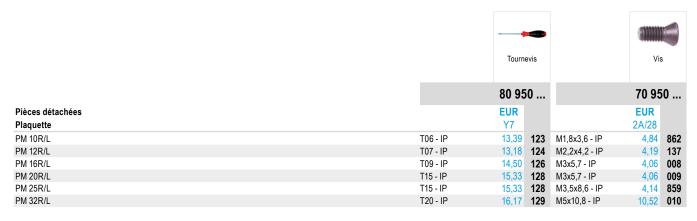



EcoCut – ProfileMaster 1,5xD

▲ Outil de perçage, de tournage et pour la réalisation de gorges

Conditionnement:

Porte-outil livré avec une vis et une clé



À gauche

À droite

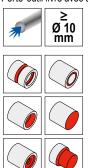
											70 821	l	70 820	0
Désignation ISO	DMIN	DCONMS	OAL	LU	WF	l ₁	l ₃	f	Couple de serrage	Plaquette	EUR		EUR	
	mm	mm	mm	mm	mm	mm	mm	mm	Nm		2G/P1		2G/P1	
PMC 10 R/L 1,5D	10	12	80	15	5,0				0,4	PM 10R/L	217,00	010 1)	217,00	010 1)
PMC 12 R/L 1,5D	12	16	90	18	6,0				1,0	PM 12R/L	224,80	012 1)	224,80	012 1)
PMC 16 R/L 1,5D	16	20	125	24	8,0	127,3	26,3	5,7	2,2	PM 16R/L	237,80	016	237,80	016
PMC 20 R/L 1,5D	20	25	150	30	10,0	152,8	32,8	7,2	2,2	PM 20R/L	293,60	020	293,60	020
PMC 25 R/L 1,5D	25	32	180	38	12,5	183,3	40,8	9,2	3,2	PM 25R/L	333,60	025	333,60	025
PMC 32 R/L 1,5D	32	40	200	48	16,0	204,3	52,3	11,7	5,0	PM 32R/L	381,60	032	381,60	032

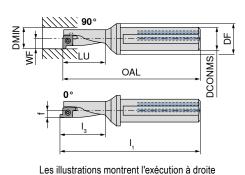
1) Utilisables uniquement en version 90°

→ Page 37+38

Vous trouverez ici des indications sur la profondeur de passe et l'avance.

→ Page 36

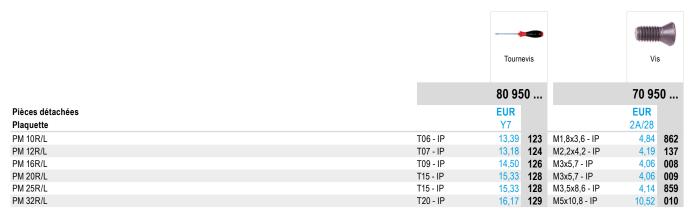

Vous trouverez les plaquettes adaptées.


EcoCut - ProfileMaster 2,25xD

▲ Outil de perçage, de tournage et pour la réalisation de gorges

Conditionnement:

Porte-outil livré avec une vis et une clé



À droite

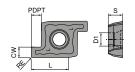
À gauche

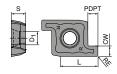
												70 821	l	70 820)
Désignation ISO	DMIN	DCONMS	DF	OAL	LU	WF	l ₁	l ₃	f	Couple de serrage	Plaquette	EUR		EUR	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	Nm		2G/P1		2G/P1	
PMC 10 R/L 2,25D	10	12	18	72,4	22,50	5,0				0,4	PM 10R/L	319,10	110 1)	319,10	110 1)
PMC 12 R/L 2,25D	12	16	22	78,0	27,00	6,0				1,0	PM 12R/L	325,80	112 1)	325,80	112 1)
PMC 16 R/L 2,25D	16	20	28	96,5	36,00	8,0	98,8	38,3	5,7	2,2	PM 16R/L	343,20	116	343,20	116
PMC 20 R/L 2,25D	20	25	32	111,0	45,00	10,0	113,8	47,8	7,2	2,2	PM 20R/L	410,10	120	410,10	120
PMC 25 R/L 2,25D	25	32	44	132,6	56,25	12,5	135,9	59,6	9,2	3,2	PM 25R/L	471,00	125	471,00	125
PMC 32 R/L 2,25D	32	40	54	158,0	72,00	16,0	162,3	76,3	11,7	5,0	PM 32R/L	528,40	132	528,40	132

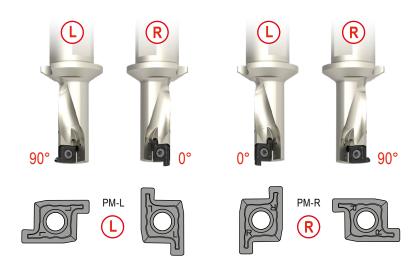
1) Utilisables uniquement en version 90°

→ Page 37+38

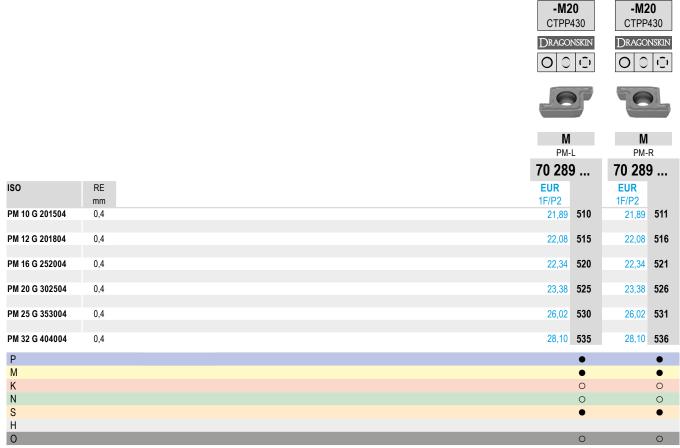
Vous trouverez ici des indications sur la profondeur de passe et l'avance.


→ Page 36


Vous trouverez les plaquettes adaptées.


35

PM-L / PM-R


Design	CW	PDPT	L	S	D1
	mm	mm	mm	mm	mm
PM 10 G 201504	2,0	1,5	5,0	2,10	2,1
PM 12 G 201804	2,0	1,8	6,0	2,30	2,5
PM 16 G 252004	2,5	2,0	8,0	2,80	3,4
PM 20 G 302504	3,0	2,5	10,0	3,70	4,0
PM 25 G 353004	3,5	3,0	12,5	4,50	4,4
DM 32 G 404004	4.0	4.0	16.0	5.60	6.0

PM-L / PM-R

 \rightarrow V_c Page 41

EcoCut – ProfileMaster 90° – Profondeurs de passe et avances

Chariotage		1,5xD											
					Profondeur de	coupe a _p (mm)							
	Taille	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0				
		Avance f (mm/tr)											
	PMC 10	0,07-0,20	0,05-0,17	0,02-0,12									
	PMC 12	0,07-0,20	0,05-0,17	0,02-0,12									
	PMC 16	0,10-0,25	0,07-0,23	0,05-0,21	0,02-0,17								
	PMC 20	0,12-0,27	0,10-0,26	0,07-0,24	0,05-0,20	0,02-0,14							
	PMC 25	0,15-0,30	0,15-0,30	0,13-0,28	0,10-0,26	0,05-0,22	0,02-0,18						
	PMC 32	0,15-0,30	0,15-0,30	0,15-0,30	0,15-0,30	0,10-0,27	0,07-0,24	0,05-0,21	0,02-0,15				

Chariotage		2,25xD										
			P	rofondeur de coupe a, (m	m)							
	Taille	1,0	2,0	3,0	4,0	5,0						
		Avance f (mm/tr)										
	PMC 10	0,07-0,19	0,02-0,13									
	PMC 12	0,07-0,19	0,02-0,13									
	PMC 16	0,10-0,25	0,07-0,21	0,02-0,13								
	PMC 20	0,12-0,27	0,07-0,24	0,05-0,19								
	PMC 25	0,15-0,30	0,10-0,27	0,07-0,23	0,02-0,15							
	PMC 32	0,15-0,30	0,15-0,30	0,10-0,27	0,07-0,23	0,02-0,15						

Dressage de faces	1,5xD / 2,25xD								
			Profondeur de coupe a₅ (mm)						
	Taille	1,0	1,5	2,0	2,5	3,0	3,5		
		Avance f (mm/tr)							
	PMC 10	0,02-0,15	0,02-0,15						
	PMC 12	0,02-0,15	0,02-0,15						
_	PMC 16	0,05-0,20	0,05-0,20	0,05-0,20					
	PMC 20	0,08-0,22	0,08-0,22	0,08-0,22	0,08-0,22				
	PMC 25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25			
	PMC 32	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25		

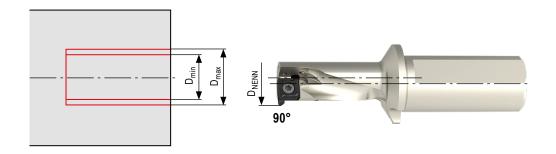
Gorges radiales		1,5xD / 2,25xD				
	Taille	Avance f (mm/tr)				
	PMC 10	0,01–0,08				
	PMC 12	0,02–0,10				
	PMC 16	0,04–0,15				
	PMC 20	0,04–0,16				
	PMC 25	0,07–0,20				
	PMC 32	0,08-0,22				

Perçage		1,5	xD	2,25xD		
	Taille	Avance f (mm/tr)	Prof. maximale (mm)	Avance f (mm/tr)	Prof. maximale (mm)	
	PMC 10	0,01-0,05	15,0	0,01-0,05	22,5	
	PMC 12	0,01-0,06	18,0	0,01-0,06	27,0	
	PMC 16	0,02-0,09	24,0	0,02-0,09	36,0	
	PMC 20	0,03-0,10	30,0	0,03-0,10	45,0	
	PMC 25	0,04-0,12	37,5	0,04-0,12	56,3	
	PMC 32	0,04-0,14	48,0	0,04-0,14	72,0	

EcoCut – ProfileMaster 0° – Profondeurs de passe et avances

Les EcoCut ProfileMaster de taille 10 et 12 ne sont pas disponibles en version 0°.

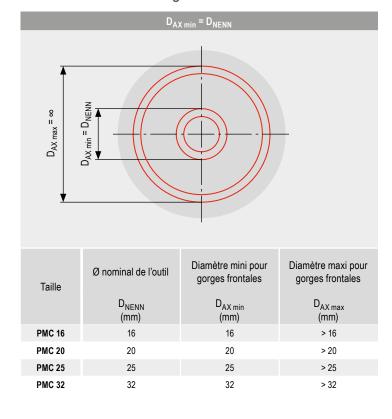
Chariotage				1,5xD /	2,25xD			
				Profondeur de	coupe a _p (mm)			
	Taille	1,0	1,5	2,0	2,5	3,0	3,5	
		Avance f (mm/tr)						
	PMC 16	0,04-0,20	0,04-0,20	0,04-0,20				
- Io	PMC 20	0,06-0,22	0,06-0,22	0,06-0,22	0,06-0,22			
	PMC 25	0,08-0,25	0,08-0,25	0,08-0,25	0,08-0,25	0,08-0,25		
	PMC 32	0,10-0,28	0,10-0,28	0,10-0,28	0,10-0,28	0,10-0,28	0,10-0,28	

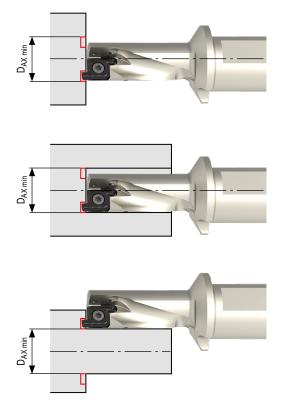

Dressage de faces	1,5xD / 2,25xD									
				Profo	ndeur de coupe a,	(mm)				
	Taille	1,0	1,5	2,0	2,5	3,0	3,5	4,0		
		Avance f (mm/tr)								
	PMC 16	0,05-0,20	0,05-0,20	0,05-0,20						
	PMC 20	0,05-0,20	0,05-0,20	0,05-0,20	0,05-0,20					
	PMC 25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25				
	PMC 32	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25	0,10-0,25		

Gorges frontales		1,5xD / 2,25xD
-	Taille	Avance f (mm/tr)
	PMC 16	0,02–0,12
	PMC 20	0,04–0,14
	PMC 25	0,06–0,18
9	PMC 32	0,08–0,20

EcoCut – ProfileMaster – Conseils d'application

ProfileMaster 90° - Perçage excentré


Grâce à la conception particulière de l'outil et de la plaquette, il est possible de percer décalé du centre avec les outils EcoCut. Il est donc possible d'obtenir des cotes spécifiques proches du Ø nominal de l'outil.



	Ø nominal de l'outil	Ø Perçage possible				
Taille	D _{NENN} (mm)	D _{min} (mm)	D _{max} (mm)			
PMC 10	10	9,85	12			
PMC 12	12	11,85	15			
PMC 16	16	15,85	19			
PMC 20	20	19,80	24			
PMC 25	25	24,80	29			
PMC 32	32	31,80	38			

ProfileMaster 0° – Ne convient pas aux opérations de perçage!

ProfileMaster 0° - Gorges frontales

Afin de garantir une bonne évacuation des copeaux la pression du lubrifiant doit se situer entre 3 et 6 bars (optimale entre 7 et 10 bars).

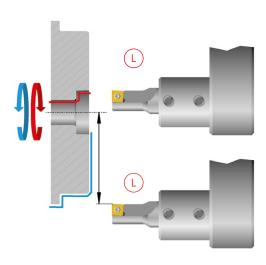
Exemples de matières

Sous-groupe de matières	Index	Composition / Structure / Traitem	Résistance N/mm²* / HB / HRC	Code matière	Désignation matière	Code matière	Désignation matière	
	P.1.1	< 0,15 % C	Recuit	420 N/mm² / 125 HB	1.0401	C15 (XC18)	1.0570	St52-3 (E36-3)
	P.1.2	< 0.45 % C	Recuit	640 N/mm ² / 190 HB	1.1191	C45E (XC48)	1.0718	9SMnPb28 (S250Pb
Aciers non alliés	P.1.3	< 0,45 % C	Trempé revenu	840 N/mm ² / 250 HB	1.1191	C45E (XC48)	1.1181	Ck35 (XC38)
	P.1.4	< 0.75 W C	Recuit	910 N/mm² / 270 HB	1.1223	C60R (XC60)	1.1203	Ck55 (XC55)
	P.1.5	0,73 % 0	Trempé revenu	1010 N/mm² / 300 HB	1.1223	C60R (XC60)	1.1203	Ck55 (XC55)
	P.2.1		Recuit	610 N/mm ² / 180 HB	1.7131	16MnCr5 (16MC5)	1.7220	34CrMo4 (35CD4)
Aciara faiblement alliée	P.2.2		Trempé revenu	930 N/mm² / 275 HB	1.7131	16MnCr5 (16MC5)	1.2312	40CrMnMoS8-6 (40CMD8+S)
Aciers lablement ames	P.2.3		Trempé revenu	1010 N/mm ² / 300 HB	1.7225	42CrMo4 (42CD4)	1.2744	57NiCrMoV7 (55NCDV7)
	P.2.4		Trempé revenu	1200 N/mm ² / 375 HB	1.7225	42CrMo4 (42CD4)	1.3505	100Cr6 (100C6)
	P.3.1		Recuit	680 N/mm ² / 200 HB	1.4021	X20Cr13 (Z20C13)	1.2080	X200Cr12 (Z200 C12
Aciers fortement alliés et aciers à outils	P.3.2		Durci et trempé	1100 N/mm ² / 300 HB	1.2343	X38CrMoV5 1 (Z38 CDV 5)	1.2379	X155CrVMo12-1 (Z160CDV 12)
	P.3.3		Durci et trempé	1300 N/mm ² / 400 HB	1.2343	X38CrMoV5-1 (Z38 CDV 5)	1.6359	X2NiCrMo18-8-5 (Maraging 250)
Astona to constability	P.4.1	Ferritique / martensitique	Recuit	680 N/mm ² / 200 HB	1.4016	X6Cr17 (430)	1.2316	X36CrMo17 (Z38CD17)
Aciers inoxydables	P.4.2	Martensitique	Trempé revenu	1010 N/mm ² / 300 HB	1.4112	X90CrMoV18	1.4057	X20CrNi17-2 (Z20CN 17-2)
	M.1.1	Austénitique / Austéno-ferritique	Traité	610 N/mm ² / 180 HB	1.4301	X5CrNi18-10 (304)	1.4571	X6CrNiMoTi17-12-2 (316Ti)
Aciers inoxydables	M.2.1	Austénitique	Trempé revenu	300 HB	1.4841	X15CrNiSi25-21	1.4310	X12CrNi17-7 (Z12CN17-7)
	M.3.1	Austéno-ferritique (Duplex)		780 N/mm ² / 230 HB	1.4462	X2CrNiMoN22-5-3 (Uranus45)	1.4410	Z2CND25 07 04 Az (F53)
	K.1.1	Perlitique / ferritique		350 N/mm ² / 180 HB	0.6010	GG-10 (Ft10)	0.6025	GG-25 (Ft25)
Fontes grises	K.1.2	Perlitique (martensitique)		500 N/mm ² / 260 HB	0.6030	GG-30 (Ft30)	0.6040	GG-40 (Ft40)
	K.2.1	Ferritique		540 N/mm ² / 160 HB	0.7040	GGG-40 (FGS400-12)	0.7060	GGG-60 (FGS600-
Fontes à graphite sphéroïdal	K.2.2	Perlitique		845 N/mm ² / 250 HB	0.7070	GGG-70 (FGS700-2)	0.7080	GGG-80 (FGS800-
	K.3.1	Ferritique		440 N/mm² / 130 HB	0.8035	GTW-35-04	0.8045	GTW-45
Fontes malléables	K.3.2	Perlitique		780 N/mm² / 230 HB	0.8165	GTS-65-02	0.8170	GTS-70-02
	N.1.1	Non durcissable		60 HB	3.0255	Al99.5 (1050A)	3.3315	AIMg1 (5005)
Alliages d'aluminium corroyé	N.1.2	Durcissable	Vieilli	340 N/mm² / 100 HB	3.1355	AlCuMg2 (2024)	3.4365	AlZnMgCu1.5 (7075
	N.2.1	≤ 12 % Si, non durcissable		250 N/mm² / 75 HB	3.2581	G-AlSi12	3.2163	G-AlSi9Cu3
Alliages d'aluminium	N.2.2	≤ 12 % Si, durcissable	Vieilli	300 N/mm ² / 90 HB	3.2134	G-AlSi5Cu1Mg	3.2373	G-AlSi9Mg
ac ionaciic	N.2.3	> 12 % Si, non durcissable		440 N/mm² / 130 HB		G-AlSi17Cu4Mg		G-AlSi18CuNiMg
	N.3.1	Laitons à copeaux courts, PB > 1 %		375 N/mm² / 110 HB	2.0380	CuZn39Pb2 (Ms58)	2.0410	CuZn44Pb2
Cuivre et alliages de cuivre (Bronze, laiton)	N.3.2	Alliages CuZn, CuSnZn		300 N/mm ² / 90 HB	2.0331	CuZn15	2.4070	CuZn28Sn1As
(======================================	N.3.3	CuSn, cuivre électrolytique		340 N/mm ² / 100 HB	2.0060	E-Cu57	2.0590	CuZn40Fe
Alliages de magnésium	N.4.1	Magnésium et alliages de magnésium		70 HB	3.5612	MgAl6Zn	3.5312	MgAl3Zn
	S.1.1		Recuit	680 N/mm ² / 200 HB	1.4864	X12NiCrSi 36-16	1.4865	G-X40NiCrSi38-18
	S.1.2	Base Fe	Vieilli	950 N/mm ² / 280 HB	1.4980	X6NiCrTiMoVB25-15-2	1.4876	X10NiCrAlTi32-20
Alliages résistants à la chaleur	S.2.1		Recuit	840 N/mm ² / 250 HB	2.4631	NiCr20TiAl (Nimonic80A)	3.4856	NiCr22Mo9Nb
	S.2.2	Base Ni ou Cr	Vieilli	1180 N/mm² / 350 HB	2.4668	NiCr19Nb5Mo3 (Inconel 718)	2.4955	NiFe25Cr20NbTi
	S.2.3		De fonderie	1080 N/mm ² / 320 HB	2.4765	CoCr20W15Ni	1.3401	G-X120Mn12
	S.3.1	Titane pur		400 N/mm ²	3.7025	Ti99,8	3.7034	Ti99,7
Alliages de titane	S.3.2	Alliages Alpha + Beta	Vieilli	1050 N/mm ² / 320 HB	3.7165	TiAl6V4	Ti-6246	Ti-6Al-2Sn-4Zr-6N
	S.3.3	Alliages Beta		1400 N/mm ² / 410 HB	Ti555.3	Ti-5Al-5V-5Mo-3Cr	R56410	Ti-10V-2Fe-3Al
	H.1.1		Durci et trempé	46-55 HRC				
	H.1.2		Durci et trempé	56-60 HRC				
Aciers trempés	H.1.3		Durci et trempé	61–65 HRC				
	H.1.4		Durci et trempé	66-70 HRC				
Aciers frittés	H.2.1		De fonderie	400 HB				
Fontes trempées	H.3.1		Durci et trempé	55 HRC				
		Disatirus duranisatirus		≤ 150 N/mm ²				
	0.1.1	Plastiques, duroplastiques						
	O.1.1 O.1.2	Plastiques, thermoplastiques		≤ 100 N/mm ²				
Matériaux non métalliques				≤ 100 N/mm ² ≤ 1000 N/mm ²				
Matériaux non métalliques	0.1.2	Plastiques, thermoplastiques						
	Aciers faiblement alliés Aciers fortement alliés et aciers à outils Aciers inoxydables Aciers inoxydables Fontes grises Fontes à graphite sphéroïdal Fontes malléables Alliages d'aluminium corroyé Alliages d'aluminium de fonderie Cuivre et alliages de cuivre (Bronze, laiton) Alliages de magnésium Alliages résistants à la chaleur	Aciers non alliés P.1.3 P.1.4 P.1.5 P.2.1 P.2.2 P.2.3 P.2.4 P.3.3 P.3.1 P.3.2 P.3.3 Aciers fortement alliés et aciers à outils P.3.2 P.3.3 Aciers inoxydables P.4.1 P.4.2 M.1.1 Aciers inoxydables M.2.1 M.3.1 Fontes grises K.1.2 Fontes à graphite sphéroïdal K.2.2 Fontes malléables K.3.1 K.3.2 Alliages d'aluminium corroyé N.2.3 Alliages d'aluminium corroyé N.2.3 Cuivre et alliages de cuivre (Bronze, laiton) N.3.1 Alliages de magnésium N.4.1 Alliages de magnésium N.4.1 Alliages de magnésium N.4.1 S.1.1 S.1.2 Alliages de titane S.2.2 S.2.3 S.3.3 Alliages de titane S.3.2 S.3.3 H.1.1 Aciers trempés	P.1.3	P.1.3	Aciers non allies	Aciers non alliés	Actiers non alliée P.1.5 C.45 % C Tempé revenu 840 Nimm² / 200 HB 1.1911 C.65E (XC.46)	Actions non alliance P.1.3 \$4,6% %.C Facebook Facebook

Conditions de coupe EcoCut

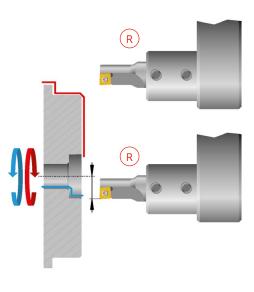
	FcoCut	coCut – Mini EcoCut – Classic / EcoCut – Solid						EcoCut – ProfileMaster
	Loodu	· Willin		200001	01000107 20000	Cond		Loodat Tromowastor
	CTWN425	CTPP435 DRAGONSKIN	CTCP425-P Dragonskin	CTCP435-P Dragonskin	CTPP430 DRAGONSKIN	H210T	H216T	CTPP430 DRAGONSKIN
Index	y (m	/min)			v _c (m/min)			v _c (m/min)
P.1.1	ν _c (m/min) 145		270	230	180			170
P.1.2		125	235	200	155			140
P.1.3		105	200	165	130			115
P.1.4		100	190	155	125			105
P.1.5		90	175	140	110			95
P.2.1		130	240	200	160			145
P.2.2		100	185	155	120			105
P.2.3		90	175	140	110			95
P.2.4		70	130	105	80			60
P.3.1		105	185	160	115			110
P.3.2		70	135	110	85			75
P.3.3		30	80	60	55			40
P.4.1		105	185	160	115			110
P.4.2		85	160	130	100			95
M.1.1		105	160	160	115			110
M.2.1		65			85			75
M.3.1	140	95	205	105	110	110	170	100 180
K.1.1 K.1.2	115	140 120	205 205	185 185	160 140	110 90	130	260
K.1.2	150	140	200	180	160	120	180	160
K.2.2	110	120	200	180	140	85	130	250
K.3.1	170	150	195	175	125	140	190	130
K.3.2	140	125	195	175	110	110	160	230
N.1.1	300	40			40	40	60	300
N.1.2	50	290			290	290	310	200
N.2.1	300	290			290	290	60	300
N.2.2	300	190			190	190	460	200
N.2.3	450	340			340	340	60	150
N.3.1	350	240			240	240	460	300
N.3.2	350	240			240	240	460	300
N.3.3	250	190			190	190	360	200
N.4.1	200	140			140	140	260	200
S.1.1	40	35		35	55	35	45	35
S.1.2	30	30		30	55	25	35	30
S.2.1	30	20		20	55	25	35	20
S.2.2	25	15		15	55	20	25	15
S.2.3 S.3.1	20 90	15 85		15 85	55 70	20 65	20 110	15 85
S.3.2	55	40		40	60	45	70	40
S.3.3	40	30		30	40	30	50	30
H.1.1						-		
H.1.2								
H.1.3								
H.1.4								
H.2.1								
H.3.1								
0.1.1	130	110			110	110	155	130
0.1.2								
0.2.1	105	95			95	95	140	105
0.2.2								
0.3.1								

 $\begin{pmatrix} 1 \end{pmatrix}$


Les données de coupe dépendent fortement des conditions extérieures, p.ex. de la stabilité du serrage de l'outil et du montage de la pièce ainsi que de la matière et du type de machine. Les valeurs indiquées représentent des paramètres de coupe optimaux qui doivent être ajustés de +/- 20% en fonction de l'environnement général et de l'utilisation!

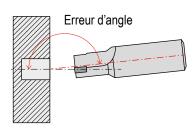
EcoCut – Résolution de problèmes

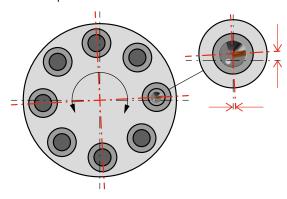
Usinage au-delà de l'axe


Problèmes

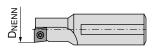
Lorsque la machine a un déplacement insuffisant dans l'axe X, il n'est pas possible d'usiner le diamètre extérieur avec le même outil.


Solution

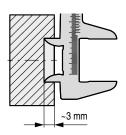

Solution: Utiliser un outil EcoCut à droite.


Danger de collision!

Problèmes



Erreur de position de tourelle



Solutions


Préréglage

- ▲ Définir l'outil comme barre d'alésage dans le programme
- ▲ Indiquez le Ø nominal de l'outil comme Ø nominal de l'alésage.

Sur la machine

- ▲ Percer sur environ 3mm de profondeur
- ▲ Mesurer le diamètre produit
- ▲ Si nécessaire, jouer sur les correcteurs
- ▲ Lancer le cycle

